ANL-GenlIV-056

Initial Implementation of Multi-Channel Thermal-Hydraulics Capability in
Frequency Domain SCWR Stability Analysis Code SCWRSA

W.S. Yang

Nuclear Engineering Division

Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439

September 15, 2005



Initial Implementation of Multi-Channel Thermal-Hydraulics Capability in
Frequency Domain SCWR Stability Analysis Code SCWRSA

W.S. Yang

Argonne National Laboratory

Abstract

A frequency domain linear stability analysis code for SCWR is being developed under
the USDOE Generation IV Initiative. Based on single-channel coolant and water rod models, a
thermal-nuclear coupled SCWR stability analysis code named SCWRSA was previously
developed and applied to preliminary stability analyses of a U.S. Generation IV SCWR reference
concept. In this work, a multi-channel thermal-hydraulics analysis capability has been developed
and implemented into SCWRSA. An iterative solution scheme was developed to calculate the
steady state flow distribution among parallel thermal-hydraulics channels under a fixed total flow
rate and the equal pressure drop boundary condition. This scheme determines the coolant and
water-rod flow rates simultaneously by taking into account the heat transfer between coolant and
water rod. For linear stability analysis, perturbation calculation models for flow redistribution
among parallel channels were developed along with an efficient scheme to solve the resulting
system of linear equations. Time-dependent behavior of water in the lower plenum was
approximated by two bounding inlet boundary conditions: instantaneous mixing and constant
mixed-mean enthalpy of water in the lower plenum. The instantaneous mixing boundary
condition neglects the time delay of the mixing in the lower plenum, and the constant mixed-
mean enthalpy boundary condition assumes that the steady state mixed-mean enthalpy of water

in the lower plenum is maintained during the time of interest.

The functionality of the modified SCWRSA code was confirmed by reproducing the

previous single-channel analysis results. Preliminary verification tests of the new multi-channel



analysis capability have been performed using two-channel models derived from the U.S.
Generation IV SCWR reference design. Although individual assemblies can be represented as
separate channels, two-channel models were used in these tests for simplicity and because of
lack of information on the core power distribution except for the target values of power peaking
factors. The results showed that the iteration scheme for the steady state flow distribution
produces the converged solution after only a few iterations. It was observed that the heat transfer
between coolant and water rod has a non-negligible effect on the steady state flow distribution.
The decay ratios obtained with multi-channel models were smaller than those determined with
single average-channel models, since the multi-channel model includes hot channel assemblies
that introduce larger Doppler and coolant density feedbacks than average channel assemblies. It
was also observed that the effects of the inlet boundary condition are not monotonic; compared
to the constant mixed-mean enthalpy approximation, the instantaneous mixing approximation
produces smaller decay ratios for the Dittus-Boelter correlation but larger decay ratios for the
Jackson correlation, although the difference is not so significant. The decay ratio for thermal-
nuclear coupled stability estimated with two-channel models was less than 0.17, which is well

below the limit (0.25) traditionally imposed for BWR stability.
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Nomenclature

A, coolant channel flow area

A, water rod flow area

Ay water rod side length

Dy, coolant channel hydraulic diameter
D, water rod hydraulic diameter

Py coolant channel wetted perimeter
Py, water rod wetted perimeter

Ny number of fuel rods per assembly
N,, number of water rods per assembly
Ny number of fuel assemblies in core
W total feedwater flow

water rod flow fraction

coolant density

o water rod density

h coolant enthalpy

h,, water rod enthalpy

hp feedwater enthalpy

P coolant pressure

P, water rod pressure

T, coolant temperature
T, water rod temperature
v coolant velocity

Vi water rod velocity

c, coolant specific heat capacity at constant pressure
y7, coolant viscosity

k. coolant conductivity

h. cladding wall to coolant heat transfer coefficient

Vil



h coolant to water rod wall heat transfer coefficient

h,, water rod wall to water rod heat transfer coefficient
q} heat flux at the fuel cladding

q;C heat flux at the water rod wall (coolant side)
CI;W heat flux at the water rod wall (water rod side)
f coolant channel friction factor

£ water rod friction factor

qr volumetric heat source in the fuel

oy fuel density

k, fuel conductivity

C‘;: fuel specific heat capacity at constant pressure
T, fuel temperature

hg gap conductance

T fuel pellet radius

Ty cladding inner surface radius

P cladding density

k, cladding conductivity

¢ cladding heat capacity

T, cladding outer wall temperature

Ax water rod wall thickness

Ps water rod wall density

cp water rod wall specific heat

kg water rod wall heat conductivity

T, water rod wall temperature (coolant side)

T, water rod wall temperature (water rod side)

power amplitude function

=

viil



>

Ck
B,
Ax
Nu
Re

Pr

core reactivity

prompt neutron generation time

effective delayed neutron fraction

reduced concentration for the precursor group k
delayed neutron fraction for the precursor group &
decay constant for the precursor group k

Nusselt number

Reynolds number

Prandtl number

pseudo-critical temperature

critical pressure

reduced pressure
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1. Introduction

The supercritical water cooled reactor (SCWR) is one of six Generation IV nuclear
systems currently being considered internationally. It has unique features that may offer
advantages compared to state-of-the-art light water reactors: a higher thermal efficiency, a lower
coolant mass flow rate per unit core thermal power, and a simpler plant with fewer major
components. On the other hand, because of a large variation of water density across the core, the
possibility of density-wave instabilities and coupled thermal-hydraulics and neutronics
instabilities exists, as discussed in the Generation IV roadmap [1]. Consistent with the U.S. NRC
approach to Boiling Water Reactor (BWR) licensing, the licensing of SCWR will probably
require, at a minimum, demonstration of the ability to predict the onset of instabilities. Therefore,
it is necessary to understand the instability phenomena in SCWR, to identify the important
variables affecting these phenomena, and ultimately to generate the maps identifying the stable

operating conditions of the different SCWR designs [2].

A frequency domain linear stability analysis code for SCWR is being developed under
the USDOE Generation IV Initiative. Based on single-channel coolant and water rod models, a
thermal-nuclear coupled SCWR stability analysis code named SCWRSA was previously
developed and applied to preliminary stability analyses of a U.S. Generation IV SCWR reference
concept [3,4]. In the current reference SCWR concept, descending-flow water rods are
introduced to achieve high coolant outlet temperature, to prevent thermal fatigue of control rod
tubes, and to provide good neutron moderation in the upper core [5]. Thus, an ascending-flow
coolant channel and a descending-flow water rod are modeled based on the single-channel mass,
momentum, and energy conservation equations [6]. The heat transfer between coolant and water
rod is considered by the one-dimensional heat conduction in the water rod wall and the heat
convections at both sides of the wall. The NIST/ASME STEAM package [7] is used to determine
supercritical water properties, and Dittus-Boelter [8,9] and Jackson [10] correlations are
optionally used to determine convective heat transfer coefficients. For the coupled thermal-
hydraulics and neutronics stability analysis, a point kinetics model with six delayed neutron
groups is used. Reactivity feedbacks due to the Doppler effects and the coolant and water-rod

density variations are considered.



The objective of this work is to investigate the parallel channel effects on the SCWR
stability by improving the previous single-channel coolant and water rod thermal-hydraulics
models [3,4] for multi-channel analysis. The computational model has been extended for multi-
channel analysis by including the steady state and perturbation models for the flow redistribution
among parallel thermal-hydraulics channels. An iterative solution scheme was developed to
calculate the steady state flow distribution among parallel thermal-hydraulics channels under a
fixed total flow rate and the equal pressure drop boundary condition. This scheme determines the
coolant and water-rod flow rates simultaneously by taking into account the heat transfer between
coolant and water rod. For linear stability analysis, perturbation calculation models for flow
redistribution among parallel channels were developed along with an efficient scheme to solve
the resulting system of linear equations. The extended computational models have been

implemented into the frequency domain linear stability analysis code SCWRSA.

The functionality of the modified SCWRSA was confirmed by reproducing the previous
single-channel analysis results. Preliminary tests of the new multi-channel analysis capability
have been performed using two-channel models derived from the U.S. Generation IV SCWR
reference design [11]. Although individual assemblies can be represented as separate channels,
two-channel models were used in these tests for simplicity and because of lack of information on
the core power distribution except for the target values of power peaking factors. The iteration
scheme to determine the flow rates of individual thermal-hydraulic channels was tested. Initial
verification tests for calculated response functions were performed by comparing the near-zero
frequency responses with the steady state gains obtained from direct perturbation calculations.

The thermal-nuclear coupled stability was estimated by using the stability criteria for BWR.

Section 2 describes the computational models including steady-state flow solution
schemes. The frequency domain linear stability analysis methods are discussed in Section 3
along with the solution schemes for the linear perturbation equations. Preliminary test results are

presented in Section 4. The conclusions and future work are summarized in Section 5.



2. Computational Models

The current U.S. SCWR reference design is a thermal-spectrum reactor with a rated
core thermal power of 3575 MW and a rated core flow of 1843 kg/s [11]. The core includes 145
fuel assemblies. The SCWR fuel assembly is surrounded by a flow box to avoid cross flow from
one assembly to its surroundings. Fuel rods are arranged in the square lattice, and square “water
rod” boxes are introduced for neutron moderation, as shown in Figure 2-1. Each fuel assembly
has 300 fuel rods arranged in the square lattice and 36 square water rods. The water rods are
introduced to provide good neutron moderation in the upper core. Control rods are inserted in the
guide tubes located in water rods. About 90% of feedwater flows downward through the water
rods into the lower plenum, and then it is mixed with the rest of the feedwater from the
downcomer in the lower plenum as shown in Figure 2-2. The mixed coolant flows upward

through the fuel channels.

Since each fuel assembly is separated from its surroundings, every assembly flow box
can be simulated as a separate channel. Thus, the SCWR core can be simulated as a parallel
channel system connected only in the lower and upper plenums as shown in Figure 2-3. For
parallel channel analyses, the previous thermal-nuclear coupled stability model based on single-
channel coolant and water rod models has been extended by including the steady state and
perturbation calculation models for the flow redistribution among parallel thermal-hydraulics
channels under a fixed total flow rate and the equal pressure boundary condition. In the new
multi-channel model, every assembly or several assemblies of similar power and flow conditions

can be represented as a thermal-hydraulics channel.

As discussed in Reference 12, the water rod density variations due to external
perturbations is important for the coupled nuclear and thermal stability of SCWR, since major
neutron moderation is provided by water rods. Thus, each thermal-hydraulic channel is
represented by a single fuel pin cell and a water rod, and the heat transfer between coolant and
water rod is taken into account. The single pin cell representation is made such that the area of
water rod wall per pin cell is preserved. Figure 2-4 shows the single pin cell model used in
SCWRSA. The heat transfer between coolant and water rod is taken into account in determining

the coolant and water-rod pressure drops in each thermal-hydraulics channel. The system



equations of these extended models and the numerical solution schemes are described in the

following sections.
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2.1. Governing Equations
2.1.1. Thermal-Hydraulics Equations

Neglecting axial heat conduction, energy variation due to pressure changes and
frictional dissipation, and shear forces due to velocity gradients in the fluid at open portions of
the surface area, the mass, momentum, and energy balance equations for one-dimensional flow

in a coolant channel can be written as

dp. 9
e 4 7 =0 2.1
o + % (p.v) (2.1)
v dv  OoP fpv’
_+ —_— e — - —ZLrc 2.2
‘ot pY 0z oz P8 2D, 2.2
//P ”
oh oh _4:b _qia (2.3)

P TPV T A T A
where z is the axial coordinate in flow direction and p,, v, P and h are the coolant density,
velocity, pressure, and enthalpy, respectively. The variable q_'f' is the heat flux at the fuel
cladding wall, and q;_ is the heat flux at the outer (i.e., coolant channel side) surface of water rod
wall. (See Fig. 2-4.) The parameters D,, P,, and A respectively denote the hydraulic diameter,
perimeter, and cross-sectional area of the coolant channel; f is the turbulent friction factor, g is

the acceleration due to gravity, and a, is the average interface area per unit height between a

coolant channel and a water rod.

Similarly, the mass, momentum, and energy conservation equations for one-dimensional

flow in a water rod can be written as

20, 9
-_ +_ wVw = O 24
ot 0oz (puv) @4
v v oP f.pv:
Dy w—_Pw _Jwlwlw 2.5
e R Y (2.5)
ah ah q/f Ph
W + wo— Isw w 26



where p , v, , P, and h, are the water density, velocity, pressure, and enthalpy in the water rod,

respectively, and ¢’ is the heat flux at the inner (i.e., water rod side) surface of water rod wall.

Note that the axial coordinate z and velocities are in the downward direction. The parameters

D, , P

w? " hw?

and A, represent the hydraulic diameter, perimeter, and cross-sectional area of the

water rod, respectively. Denoting the inside side length of water rod by a,, then A, =a,,,

P

hw

=4a,,and D ,=4A /P, =a,. Since the whole assembly is represented by a single coolant

hw

channel and a water rod, the average interface area per unit height between a coolant channel and

a water rod, 1.e., a, in Eq. (2.3), can be represented as

4 =2 (¢ +200N, 2.7)
Nf

where N, and N, are the numbers of fuel and water rods in an assembly, respectively, and Ax

is the thickness of water rod wall. The mass, momentum, and energy conservation equations of
coolant and water rod channels are closed by the equation of state for supercritical water. In this

study, supercritical water properties are determined using the NIST/ASME STEAM package [7].

As the boundary conditions for these conservation equations, the inlet flow rate, inlet
enthalpy, and outlet pressure are used. These boundary conditions are determined using the given
system outlet pressure and total coolant and water rod flow rates. As mentioned above, a large
fraction of feedwater flows downward through the water rods and is mixed with the rest of the
feedwater from the downcomer in the lower plenum. The mixed water from the lower plenum
then enters the coolant region of all fuel assemblies. Thus, the inlet enthalpy of coolants into all
fuel assemblies is assumed to be constant at the mixed-mean enthalpy of water in the lower
plenum. As a result, the mass and energy conservation equations in the lower plenum are

approximated as

dm J J
o Dow W= w, (2.8)
j=1 j=1
d J J
E (mhco) = z hw(),jwwj + hdcwdc - th z Wcj (29)
Jj=1 Jj=1
P =F» (2.10)



where m is the lower plenum mass, w,; and w,; flow rates of thermal-hydraulic channel j, #,

and A are the coolant inlet and water-rod outlet enthalpies, and J is the number of thermal-

w0, j

hydraulic channels. The pressure P,, and enthalpy £, are inlet values to the orifices of coolant

channels, while P, and h,, , are water-rod outlet values. The coolant and water-rod flow rates

of each thermal-hydraulic channel are determined under a fixed total flow rate and the equal

pressure boundary condition. For given total coolant flow rate w, and water-rod flow rate w,,

the mass conservation and equal pressure drop boundary conditions are given by

AP, =AP,=---=AP, (2.11)
APwl = APWZ == APWJ (212)
J
Dw,=w, (2.13)
=
J
Dow, =w, =w Wy, (2.14)

2.1.2. Heat Conduction Equations

Neglecting axial conduction, the heat conduction in the fuel pellet and cladding is

determined by the following one-dimensional radial heat conduction equation:

ch ai:li[kr(T)r aT’}+q”’ (2.15)

Pty ot ror or !
where p,, c,, and k, are respectively the density, specific heat, and heat conductivity of fuel
pellet or cladding, and q_'f" is the volumetric heat source. The fuel and cladding heat conduction

equations are coupled through the interface condition at the gas gap given by
” aTj
q, =-— kf? =h,(T,-T,) (2.16)

Here h, is the gap conductance, 7 is the temperature at the fuel pellet surface, and 7, is the

temperature at the inner surface of the cladding. This equation provides a boundary condition for
the second order differential equation for the heat conduction in fuel pellet. Another boundary

condition is given by the symmetry condition (i.e., T /dr =0) at the center of fuel pellet.



The heat conduction equation for cladding is coupled with the coolant energy equation

in Eq. (2.3) through the Newton’s law for heat convection at the cladding wall

, oT
Qf = _(kcl 5) = hcl (Tcl - Tc) (217)
cl

where T, is the cladding outer wall temperature, 7, is the bulk temperature of coolant, and £, is
the heat transfer coefficient at the cladding wall. This equation provides a boundary condition for
the second order differential equation for the heat conduction in cladding. Another boundary

condition is given by the heat flux condition at the inner surface of cladding q;' =q'r./ r, » where

r, and r, are the fuel pellet radius and the cladding inner surface radius, respectively.

Since the water-rod wall thickness (0.4 mm) is much smaller than the side length (33.6
mm), the axial and azimuthal heat conductions in the water rod wall can be neglected. Thus, the
heat conduction in the water rod wall can be determined by the following one-dimensional heat

conduction equation:

T d oT
9L _ 9oL 218
P 5 8x{ o )8x} (2.18)

where p, ¢, , and k are the density, specific heat, and heat conductivity of water rod wall,

respectively. This heat conduction equation is coupled with the coolant channel and water-rod

energy equations in Egs. (2.3) and (2.6) through the heat fluxes at the surfaces of water rod wall

q,. = —(ks —aTj =h (T, —T,) (2.19)
ox ).

q:w = _(ks a_TJ = hsw (’Tsw - Tw) (220)
ox ),

Here T,, and T, are the temperatures at the outer (i.e., coolant channel side) and inner (i.e.,
water rod side) surfaces of water rod wall, respectively, and 7, and 7, are the bulk temperatures

of coolant and water rod. The heat transfer coefficients . and h,, are the values at the outer

and inner surfaces of water rod wall, respectively. Equations (2.19) and (2.20) provide boundary

conditions for the second order differential equation in Eq. (2.18).



2.1.3. Point Kinetics Equations

The temporal variation of the core power is determined by the following point kinetics

equations with six delayed neutron groups [13]

dp(t) _ p(t) - 26
o _P N ﬁp(t)_i_ > Ae, () (2.21)
de (1) _ B, DO =Ae, (1), k=126 (2.22)
_dt A k k bl b b b

where p is the flux amplitude function, p is the core reactivity, f is the effective delayed
neutron fraction, A is the prompt neutron generation time. The variables ¢, (t), S,, and A,

represent the reduced precursor concentration, delayed neutron fraction, and decay constant of
each delayed neutron group k, respectively. These point kinetics equations are coupled with the
coolant and water-rod conservation equations and the fuel heat-conduction equation through the

Doppler, and coolant and water-rod density reactivity feedbacks.
2.1.4. Friction Factor and Heat Transfer Correlations

The turbulent friction factor f in Egs. (2.2) and (2.5) for a smooth tube can be obtained

from the Blasius and McAdams relations

0.316Re™**, Re <30,000
f= ‘. . (2.23)
0.184Re ™", 30,000< Re <10
where Re is the Reynolds number defined as
Re=P"2 (2.24)

U

with fluid density p, velocity v, viscosity u, and hydraulic diameter D.

The heat transfer coefficients 4 in Egs. (2.17), (2.19) and (2.20) are determined by
either the Dittus-Boelter correlation [8,9] or the Jackson correlation [10]. The Dittus-Boelter

correlation is given by
Nu =0.023Re"* Pr» (2.25)

where Nu and Pr are Nusselt and Prandtl numbers defined by

10



Nu=22 (2.26)
Pr= ”% 2.27)

with fluid conductivity k and specific heat c,. This correlation is known to be not accurate

enough for SCWR heat transfer calculations [10,14,15].

The Jackson correlation, which is considered more appropriate for SCWR in a wide
range of operating conditions [10], was developed for forced convection heat transfer from tubes

to supercritical water and supercritical carbon dioxide. The correlation is

03/ — n
c
Nu, =0.0183 Re? P (&j S (2.28)
pb Cpb
where ¢, is defined by
_  h,—h
c, = 2.29
"I, 22
and the exponent 7 is defined as
0.4 forT, <T, <T,.
04+0.2(T, /T, -1 for7, <, <T, 530
"= 04+0.2(T, /T, -D)(1-5T, /T, -1) forT, <T,<1.2T, andT, <T, (2.30)
0.4 for1.2T, <T, <T,

where Tpc is the pseudo-critical temperature. Here the subscripts b and w denote the properties

at bulk coolant and local wall temperatures, respectively. The pseudo-critical temperature is
defined as the temperature at which the specific heat capacity at constant pressure is maximized.

It is obtained from the correlation of Howell and Lee [16]

— —2
T, =547.27+114.97p, —15.216° (2.31)

where T isin degrees K and p, is the reduced pressure, which is calculated as
P =— (2.32)

where P is the pressure and P, is the critical pressure. The Jackson correlation is applied at the

fuel cladding and coolant interface and at the water rod wall and water rod interface. At the
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coolant and water rod interface, the Dittus-Boelter correlation is used, since the Jackson
correlation given by Eqgs. (2.28) to (2.32) is not defined for heat transfer from hot liquid to colder

surface.

2.2. Spatial Discretization

The governing equations discussed in the previous section form a system of nonlinear
equations. This system of nonlinear equations cannot be solved analytically, and thus need to be
solved numerically. In this section, the spatial discretization schemes employed to solve this

system of equations are discussed.

2.2.1. Thermal-Hydraulics Equations

To derive the finite difference approximations of coolant conservation equations, the
problem domain is divided into axial computational nodes as shown in Figure 2-3. In order to
facilitate the frequency domain analysis, the finite difference equations are derived in terms of
the state variables at node surfaces such that the variables of only two meshes are coupled.
Applying the upwind differencing scheme to Egs. (2.1), (2.2), and (2.3), the finite difference

equations for coolant channel node i are obtained as

dpc,i 1
7 = E(pc,i—lvc,i—l _Ioc,ivc,i) (233)
dv.. p.v., 1 foiaPeiVers
P = :$(vc,i— _Vc,i)+_(Pc,i— _Pc,i)_pc,i— g_u (2.34)
d Az ‘ Az, : 2D,
dh,, Ve q,.P, q a
pc’i d;l — pcA,z;}c,l (hc,l»_l _hc,i)_i_ qj:; h _ qJX 1 (235)

Here the variables with bar denote node averaged values, and those without bar denote the values

at node surfaces.

Applying the upwind differencing scheme to Eqgs. (2.4), (2.5), and (2.6), the finite

difference equations for water rod nodes are obtained as

adp.. .
ﬁ = L(low i1 Vwirt ~ PV i) (2.36)
dt AZHI ’ ’ S
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2
de,i pw,ivw,i 1 fw,i+1pw,i+lvw,i+l

w,i = (vwi+ _vwi)+—(Pwi+ _Pwi)+ w,i+ g_ (237)
p ! dt AZHI . ! AZHI g ’ p o 2th
dh . AT g P
pWi w,i — pw,tvw,l (hw " _hwi) + q_YW,H-l hw (238)
Cdr T Az, A

2.2.2. Heat Conduction Equations

For each axial coolant node, the heat conduction equations for fuel pellet and cladding
are discretized in the radial direction as shown in Figure 2-5. The pellet region is divided into n
equidistance meshes and the temperatures are defined at the mesh boundaries. Two meshes are
used for the cladding region. Therefore, the total number of mesh points including the fuel center

is n+4. Among n+1 fuel temperatures, one is at the center, 7;, and one is at the outer surface
Tfs. The cladding temperatures at the inner, middle, and outer wall are denoted as Tg, T , and

T, , respectively.

C

Cladding
Ve

' T

cl

v
~

,i r2 r3 rn rn+1

r

n+2 rn

n+3 K

n+4
Figure 2-5 Radial Mesh Structure for Heat Conduction Calculation

The central differencing scheme, which has a second order accuracy, is used for the
spatial differencing of Eq. (2.15). At each interior mesh point j, the second order derivative

term of Eq. (2.15) is approximated as
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19 oT
7$[k(T)r§} meTate, Ti+e, T (2.39)
j
k.
6= 1= (2.40a)
1 Ar Ar
€ ;== (Ar) {(1—2—,}] kit {14'2—,}] kjﬂ,z} (2.40b)
k.
e, .= ./+1/22 1+£ (2.4OC)

where k;,,,, is the heat conductivity at the middle of two mesh points j and j+1, which is

approximated by the mean value of k; and k.

At the center of the fuel pellet, a symmetric boundary condition is used. Based on the
symmetric property and the second-order differencing, a parabolic shape can be assumed for the

temperature variation near the central point as
T(r)=ar’ + T, (2.41)
By applying this parabolic shape to the neighboring mesh point, the coefficient a can be

determined, and thus the coefficients of Eq. (2.39) can be expressed as

4k3/2 _ 4k3/2
20 G = 2
(Ar) (Ar)

e, =0,¢,=- (2.42)

Similarly, the finite difference equations for the mesh points at the fuel pellet surface
and the inner and outer surfaces of cladding are derived by using parabolic temperature shapes
and applying the heat flux boundary conditions discussed above. The resulting approximations of
the second order derivative term of Eq. (2.15) are summarized below.

(1) j=n+1 (r=r,, fuel pellet surface),

h h
Zk"“z T - 2k”*‘2 +-£ 3+l— K, T.,+-—+* 3+l— K, T., (2.43)
(Ar) (Ar)”  Ar n k., Ar n k

(2) j=n+2 (r=r,, cladding inner surface),
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e R a1 O L
g g g 4 8

8

(3) j=n+4 (r=r,, cladding outer surface),

e L | e I 05
r r

cl cl cl cl

Here d is the thickness of cladding, k, is the heat conductivity of cladding at the inner surface,

and k is the heat conductivity of cladding at the outer surface.

The above finite difference approximations for the Laplacian term of Eq. (2.15) couple
each mesh temperature with two neighboring mesh temperatures. By combining the temporal
derivative and volumetric heat source terms with these approximations of Laplacian term, the
difference equations for individual mesh points can be represented as a tri-diagonal system of
equations as
ﬂ

dt

The coefficients in this system of equations are determined by the thermal properties of fuel and

=el’jTJ._1+ed’TJ.+e T +s;, j=L2,---,n+4 (2.46)

Pic,; j u it i

cladding and the heat transfer coefficients in the gas gap and cladding wall. Since the thermal
properties are temperature-dependent, Eq. (2.46) is a system of non-linear equations. It can be

seen from Eq. (2.45) that the source term s,,, of Eq. (2.46) includes the bulk coolant temperature

while the other source terms include the volumetric heat source only.

Therefore, denoting the radial temperature distribution vector by T

"+ » Eq. (2.46) for the

axial node i can be rewritten as

+b. T (2.47)

i fiitei

de,i —
D, ot =E, T, +r,.q,

where D, ; is a diagonal matrix including the product of density and specific heat, E ; is a tri-
diagonal matrix with elements depending on the heat conductivity and mesh size, and T ; is the

bulk coolant temperature that can be determined from the node average enthalpy E,i . The vector
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r,, represents the radial distribution of the volumetric heat source, and the vector b ;. represents

the convection boundary condition at the cladding wall.

Dividing the water rod wall into two equal meshes and applying the central differencing

scheme to (2.18), the finite difference equation for the mid-wall temperature 7, of axial node i

can be obtained as

dT,

s S,

ps,icp,i

_ 4k, T
dt _(Ax)z sc,i

2T, +T,,) (2.48)

where the variation of heat conductivity over a thin wall is assumed negligible and &, evaluated
at temperature T, is used. Using parabolic temperature shapes and applying the heat flux

boundary conditions given in Egs. (2.19) and (2.20), the finite difference equations for the

temperatures at inner and outer surfaces are derived as

K dTvc i Skv i Skv i + 4hvc i T + 4hvc i T (2 49)
.C . — = = .= = = . = - o
psc,l pi dt ( « )2 §,1 ( « )2 f SC,1 « c,l
K dY;w i 8k5 i T 8k5 i + 4hsw i T + 4hsw i T (2 50)
.C . — = . .= . . . . . .
pSW,l pii dt ( ‘ )2 K] ( ‘ )2 « SW, I « w,i+l

Note that the node average coolant and water rod temperatures are approximated by the upwind

surface values. Denoting the temperatures of water rod wall meshes by a vector

T, = (TYCJ,TU,TSWJ)T , Egs. (2.48) to (2.50) can be rewritten in a matrix form as
dT. .
Dsid_”:E”TYi+bvci’Tci+bvwiTwi+l (251)

where D ; is a 3X3 diagonal matrix including the product of density and specific heat, E_; is a

3%3 tri-diagonal matrix, and b, and b, are 3x1 column vectors.

2.3. Steady-State Solution Scheme

At the steady state, all the heat generated in the fuel is deposited in the coolant, and
hence the cladding-wall heat flux is directly represented by the volumetric heat source. As a
result, the fuel conduction equations are decoupled from the other equations. Therefore, the axial
distributions of coolant and water rod temperature, pressure, density, and velocity can be

determined first for given inlet flow rate, inlet enthalpy (or temperature), and outlet pressure.
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Then, for each axial node, the radial distribution of fuel pin temperature can be determined by
solving the fuel conduction equations with the boundary condition provided by the coolant

temperature of each axial node.

The Dittus-Boelter correlation depends on the bulk temperature only. Thus the cladding
wall temperature is directly determined from Eq. (2.17). For the Jackson heat transfer correlation,
the heat transfer coefficient is dependent on both the coolant and cladding temperatures.

Therefore, Eq. (2.17) needs to be solved iteratively for the cladding temperature.

The inlet flow rates and enthalpy of individual thermal-hydraulics channels are

determined by solving Eqgs. (2.8) to (2.14) iteratively for given total coolant flow rate w, and
water rod flow rate w,_ . Note that the time derivatives in Eqgs. (2.8) and (2.9) are zero at a steady

state. Figure 2-6 depicts the overall iteration scheme for the steady state solution, which can be
summarized as

(1) At the beginning, initial guesses for the coolant and water-rod flow rates of individual
channels are made.

(2) With known flow rates, feedwater enthalpy, system outlet pressure, and power
distributions, the coolant and water rod thermal-hydraulic equations in Egs. (2.1) to
(2.6) are solved for every channel. Since the heat transfer between coolant and water
rod depends on the coolant and water rod temperatures, these equations are solved
iteratively as described in Section 2.3.2.

(3) Using the pressure solutions for individual channels, it is tested whether the equal
pressure drop boundary conditions are satisfied.

(4) If the pressure drop boundary conditions are satisfied within specified convergence
criteria, then the fuel-pin temperature equation is solved for each channel, using the
known heat source and coolant temperature distributions. The solution scheme is
described in Section 2.3.3.

(5) If not, the coolant and water-rod flow rates of each channel are updated as described in
Section 2.3.1. Using the updated flow rates, the mixed-mean enthalpy of water in the

lower plenum is updated. Go back to the step (2).
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Figure 2-6 Overall Iteration Scheme for Steady State Solution
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2.3.1. Coolant and Water Rod Flow Rates

Perturbation of coolant or water-rod flow rate in a channel changes the amount of heat
transferred between coolant and water rod, which in turn changes the coolant and water-rod
pressure drops of that channel through water density variations. Thus, the coolant pressure drop

AP, and water-rod pressure drop AP, of each channel j are a function of coolant mass flux G,
and water rod mass flux ij . As a result, for given total coolant flow rate w, and water-rod flow

rate w,, the mass conservation and equal pressure drop boundary conditions to be satisfied can

be represented by the following system of equations:

AP1(G1,G,)) =AF5(Gy, G,p) =+ = AR, (G, G,y ) (2.52)
APWI (Gcl’ Gwl) = APWZ (GCZ’ Gw2) == APW./ (GCJ ’ GWJ) (253)
J
> N,AG,=w, (2.54)
j=1
J
Y NAG, =w, (2.55)

where N ; is the number of assemblies in channel j, and Aq. and sz are the total coolant and

water rod flow areas of an assembly in channel j, respectively.

Expanding each channel pressure drop as a first-order Taylor series of mass flux, this

system of nonlinear equations can be solved iteratively using the Newton-Raphson method as

AP/ = AP +a) Gy =G+ b (G =G)), j=1.2.00 ] (2.56)
AP,V =APP +c(" (G = G)+d (G =G), j=1.2.00 2.57)
J
ZNJ-AC_/-GEJ’”) =Wr (2.58)
j=1
J
D NAGH =w, (2.59)
j=1

(n)

where 7 is the iteration index and a{"”, b}, ¢!, and d}" are expansion coefficients that can be

determined as described below. For known mass fluxes and pressure drops of the n th iteration,

this system of linear equations can be solved for new mass fluxes G\'*" and G{;"" as
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G =GO + Dl(n) [ 4" (AP —AP™) - (AP, AP@W)}, =120 (2.60)
J

n+ n 1 n (n+1) n n (n ) n .
GU =G W[ C@PI AR —a GPUT AR | =120 @6D)
where D" =a!"d" —b{"c!" . The core average pressure drops AP, and AP, are given by

() _ 1 (n) ¢ £(n) _ () (n) ¢ p(n) _ (n)
AP. a(n>5<n> — By [5 & =-n")-p" (" - )] (2.62)

(ntl) _ 1 n) ¢ £(n) _ () (n)  p(n) _ o)
AP, = QMW — fyn [7/ " -n"-a" (" - )} (2.63)

(n) d(")NjACJ (n) _ b(")Nqu n) (n)NJAWJ (n) (n)NJAWJ
o =Y A iR LB =2 Sor s V= > S 0= > o (2.64)
J J j J J J J
d"N,A,AP" b"N,A AP,

(n) _ ¢ ny _ y
f B z#’ 77 - z#,
J (n)N 141 AP(H) J (n)N 141 AP(n) (265)

5("’=2 () ’ “’(")ZZ ()
Dy D}

J J

The initial guesses of coolant and water rod mass fluxes are made such that the flow rates of each

channel are proportional to the channel power.

The expansion coefficients a\”, b{", ¢{”, and d{" in Eqs. (2.56) and (2.57) are

J

. . . . . . (Vl—l)
determined approximately by expanding the pressure drops of previous two iterations AP,

APV, AP and AP as first order Taylor series around the mass fluxes G|’ and G .

wj

The resulting coefficients are given by

= 3 (G ~G ARy AR -G -Gl ARy -8R ] 260

b;”) — _ﬁ [(Géin) _ ij”_” )(AR;-") _ APL,(-n_D) _ (ijm _ fo‘” )(AR;-") _ APL;."‘Z) )} (2.67)
i

¢ = A%) [(Gf;’ —GU)APY — AP )= (G =G ) (AP — APSY )] (2.68)

d" = —ﬁ[(qﬁﬁ —GY ) AP = APY™) = (GS =G ") AP — AP ™) | (2.69)

J
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where A" =(G' -G ™")Gy -G )= (G =Gy )G =G™) . For the first two

iterations, these coefficients are approximated as

APY 0

aV=—2- b =c"=0,dV=—21 (2.70)
J G(l) J J J G(l)
¢ wj

A P(2) _ n 2 _ A P(l)

@ _""dg APLJ‘ PP =c@=0. 4% = APWJ’ wj

i (2) wm > T T T (2) 1)
G; -G G -G

o o wj wj

a (2.71)

2.3.2. Coolant Channel and Water Rod Equations

At a steady state, all the time derivatives are zero, and hence the coolant conservation

equations in Eqgs. (2.33) to (2.35) are decoupled from each other. Therefore, for given inlet flow

rate (w,,, ), inlet enthalpy (A, ,, ), and outlet pressure (P, ), they are reduced to
Wei = Wein (2.72)
2 T 2

WL‘ in 1 1 — c iAZiWC in
F,=F, ~ 2 - —P. igAZi _f’f’z (2.73)

, , Ac pc,i pc,i—l ’ 2thc,iAc

—» P AZ —» a A ‘
hc l hc’i_l qf,z h i qSC,l 1 Zz (274)
Wc,in Wc,in

Since the NIST/ASME STEAM package is adopted in this study to provide the water properties
for given pressure and temperature, it is more convenient to use the temperature as a state
variable rather than the enthalpy. In this case, the energy equation in Eq. (2.74) is represented by
an integral equation as

Z[;,iPhAZi _ q:c,ialAZi

[ ¢, (B,.T)T = (2.75)
Tein , Wc,in Wc,in
In the same way, the water-rod conservation equations are reduced to
Wi =W, (2.76)
2 " 2
W, _ Azw" .
L B Y el @77
Aw pw,i—l pw,i 2thpw,iAw
Ty ia T _:,w iP WAZi
[" e, (B, Tydr = Lo (2.78)
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The conservation equations for coolant channel are coupled with those for water rod
only by the heat transfer through water rod wall. Once the heat fluxes at the water rod wall are
known, the conservation equations for coolant channel and water rod can be solved
independently in a way described in the previous study [17]. In addition, most of the heat
deposited in coolant is removed by convection, and only a small fraction of it is transferred by
the conduction through the water rod wall. Therefore, the conservation equations for coolant
channel and water rod can be solved iteratively by a few iterations on the heat flux at the water
rod wall. For given heat fluxes at water rod wall, the momentum and energy equations for
coolant channel and water rod are solved by two-step iterations as described below; one is an
outer iteration for the overall axial pressure distribution, and the other is an inner iteration for the
temperature or pressure of each node. These iterative solution schemes provide the temperature,
pressure, and density at each node surface. The enthalpy at each node surface is determined from
the equation of state using the known pressure and temperature. Each node-average value is

approximated by the arithmetic average of the upper and lower surface values.

Iteration Scheme for Water-Rod Wall Heat Flux

Since the heat flux in the water rod wall is constant at a steady state, the coolant and
water-rod momentum and energy equations in Egs. (2.73), (2.75), (2.77), and (2.78) can be
solved by iteration on the heat flux ¢, =g , as

(1) Make initial guesses for the heat flux, water rod pressure and temperature, and water

rod wall temperatures in each axial node

7. =q. =0 (2.792)
T =T, (2.79b)
Py =P, (2.79¢)

T(O) — TS(?) — T(O) =T

Sw,i sc,i in

(2.794d)
(2) With known 6_1;_(,’;), solve iteratively the coolant channel equations in Egs. (2.73) and

(2.75) for T\*" and P\ using the “iteration scheme for temperature and pressure

distributions” described below.

(3) With new coolant channel solutions and previous water rod solutions, determine the
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heat transfer coefficients at wall surfaces and wall heat conductivity:

R = h [T PE 500 (2.80a)
Y =n, [TY,P% v*)] (2.80b)
ke =k T (2.80c)

(4) Solve the water-rod wall conduction equation in Eq. (2.51) for T';"”, and update heat

flux using Egs. (2.19) and (2.20). Since the spatial variation of heat conductivity is

neglected, the heat flux and temperatures can be determined as

-1
1 Ax 1
—7(k+1) _ =7(k+1) _ (k+1) (k)
qSC,[ _qsw,i - h(k+1) + k(k) + h(k) [TC,,‘ _Tw,,‘ ] (2813)
sC,i s, SW,i
q’/(k-#l)
(k+1) _ g (k+1) sc,i
Tsc,i _7;-,1' - h(k+1) (281b)
sc,i
q”(k)
(k+1) _ 47 (k) SW,i
Tsw,i _Tw,i + h(k) (281C)
SW,i
1
k+1 k+1 k+1
Tv(,i+ : :E[TS‘(C,;- ) + Tv(w,-; )] (281d)

(5) With updated heat flux g/ ", solve iteratively the water rod equations in Egs. (2.77)

and (2.78) for T"™ and P“™" using the “iteration scheme for temperature and

pressure distributions” described below.

(6) If

w,i

T”‘“)—Tw‘,kl.)‘ is less than a specified convergence criterion for all nodes, stop;

otherwise go back to the step (2).

Iteration Scheme for Temperature and Pressure Distributions

For given heat fluxes at water rod wall, the momentum and energy equations for coolant

channel and water rod are solved by two-step iterations: an outer iteration for the overall axial

pressure distribution and an inner iteration for the temperature or pressure of each node. In the

following description of these iteration schemes, the outer and inner iterations are denoted by the

indices [ and m , respectively.

(1) Make an initial guess for the pressure P. at each node surface be equal to the given
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outlet pressure
P” =P, (2.82)
(2) By sweeping from the inlet node to the outlet node successively (i.e., from bottom to
top for coolant channel, and from top to bottom for water rod), determine the outlet
temperature of each node using known inlet temperature and cladding wall heat flux.

That is, solve Eq. (2.75) for 7" using known T."" and g, for a coolant channel

node or solve Eq. (2.78) for T."'"" using known T,"*" and g7, for a water rod node. For

each node, the outlet temperature is iteratively determined using the “iteration scheme
for outlet temperature of a node” described below.
(3) By sweeping from the outlet node to the inlet node successively, determine the inlet

pressure of each node using known outlet pressure and inlet temperature. That is, solve

Eq. (2.73) for P'™ using known T and P"*" for a coolant node or solve Eq.

(2.77) for P"*" using known T"*" and P! for a coolant node. For each node, the

inlet pressure is iteratively determined using the “iteration scheme for inlet pressure of

a node” described below.

4) It ‘B”“) —B”)‘ is less than a specified convergence criterion for all nodes, then return;

otherwise go back to the step (2).

Iteration Scheme for Outlet Temperature of a Node

For given inlet temperature T, the outlet temperature T*" of a coolant or water rod

in,i out,i
node is determined iteratively as follows:

(1) Make an initial guess for T'"*” by evaluating the specific heat with the inlet

out,i

temperature 7" and the node average pressure approximated by the mean value of

in,i

inlet and outlet pressures as

PO =R +B0,1/2 (2:83)
o =g 4 L (2:84)
’ ’ cp[Pi()’Tz"r(z,;—)] in

(2) Re-evaluate the specific heat with the previous inner iteration temperature 7\ and

out,i
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T(l+1 ,m+1)

determine an updated temperature 7, as
—
1 q P AZ T U+Lm) _
(I+1m+1) _ A(i+m) Al N 0
7:)u11 7:)u11 ﬁ(l) T(Z+l,m) .[T_(p,]) p[Pl ,T]dT (285)
Cp[ i >Tout, ] Win i
(3) If [T\ 7;;’,?"”)‘ is less than a specified convergence criterion, then return;

otherwise go back to the step (2).

Iteration Scheme for Inlet Pressure of a Node

For given outlet pressure P'*" | the inlet pressure P"™" of a coolant or water rod node
in,i

out,i °

is determined iteratively as follows:

(1) Make an initial guess for the inlet pressure P.""* be equal to the outlet pressure P\’

out,i

P(l+l 0) P(l+l) (2.86)

m, out,i

(2) Estimate p, ,, p,, and 7, with the previous inner iteration pressure P, " and

m,

calculate f, as

P = PR T (2.87)
R VR (2.88)
LY =[1,,) +T,71/2 (2.89)
2 = g phm T (2.90)
frm=c {—Avgﬁfim} 2.91)
(3) Calculate the pressure loss in the node as
where the gravitational term is negative for a coolant node and positive for a water rod
node.
(4) Update the lower surface pressure P
P = B + AR, IR (2.93)

(5) If |[PUmD — pttm| s less than a specified convergence criterion, then return;

m, m,
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otherwise go back to the step (2).
2.3.3. Fuel Conduction Equations

For each axial node i, the fuel-pin temperature equation given in Eq. (2.47) is solved
with the known volumetric heat source distribution and coolant temperature. Since the time
derivative is zero at a steady state, Eq. (2.47) is reduced to a system of non-linear algebraic

equations. This system of equations is solved iteratively as follows:

(1) Make an initial guess for the fuel pin temperature vector T},

(2) Estimate the fuel and cladding properties using the previous iteration temperature
vector and compute the coefficient matrix E{[T}’]

(3) Solve the resulting tri-diagonal system of linear equations by a single sweep of forward
elimination and backward substitution

T_;Z;l) = _[E(fl)z I (rf,iq,f”,i + b_f,iTc,i) (2.94)

4) If ‘T;’f” —T;’f‘ is less than a specified convergence criterion, stop; otherwise, go back

to the step (2).
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3. Frequency Domain Linear Analysis

The frequency domain linear system of equations is obtained by linearizing the
differential equations and the constitutive equations near the steady state solution and
subsequently applying the Laplace transformation to the resulting linear equations. Each
equation is linearized by representing each state variable with its steady state values and a
deviation from steady state, expanding nonlinear terms in Taylor series, and neglecting higher
order terms. The frequency domain linear system of equations is obtained by applying the
Laplace transformation to the resulting linear equations. The frequency responses of state
variables to the external perturbations are determined by solving this linear system of
perturbation equations. The determinant of the coefficient matrix of this system of equations is

the system characteristic equation that determines the system stability.

The frequency responses of state variables and the system characteristic equation are
discussed in the following sections along with the detailed derivation of the frequency domain

linear system of equations.
3.1. Linear Perturbation Equations
3.1.1. Coolant Perturbation Equations

In order to derive the perturbation equations of the coolant conservation equations, each
of density, velocity, enthalpy, pressure, and heat flux is represented by its steady state value and

a deviation from steady state as
P (1) = P, +p, ()
v.(t)=v,, +0v,(t)
h.(t)=h,+ Oh.(t) 3.1)
F(t)=PB,+6h)
C_I,f’z ()= ‘_l,f’,io + 5‘7’;1 (t)
Toei ()= Gpeio + 6., (1)

Here the subscript ¢ for coolant is omitted for simplicity. By substituting these perturbation

expressions into Egs. (2.33) to (2.35), expanding nonlinear terms in Taylor series, and neglecting
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higher order terms, we obtain the linearized perturbation equations for the mass, energy, and

momentum conservation equations as

pi—l,O

%ébi = _ZZ) &P, — leo o, + XZIO P+ o, 3.2)
v.,(h_, . —h (h_, . —h v
P i&hi :M@q +M5vi _Pulio s,
dt AZi AZi AZi (3 3)
sz zOé‘h +ﬁ qfl__éh:;l
Az, A
pioié‘vi _ Vio (Viio = Vig) 5.+ PioWViio—2vy) Sv. ——§P
dt AZI» Azi AZl
I i 10"210 PioV; SiioPisioVioio
— +(1+a) "L 5o + 10%i0 _ (0 4 gp) List0Fin107im10 | o 34
_g ( ) Dh pz—l AZZ ( ) 2Dh i-1 ( )
+ L_Fafi—l,o i—l,Oviz—l,Oy L | sp. +afz 1,0 110"1210 10 g1
LAz 2D, Hi 2D, p; .

For the derivation of Eq. (3.4), the variation of the turbulent friction factor for a smooth tube

given in Eq. (2.23) is determined as

5f= 5 + O 5, %P 5, IV 5p (3.5)
p. v 1 1

where & is the exponent of Reynolds number in Eq. (2.24), S is the partial derivative of the
viscosity with respect to enthalpy at a constant pressure, and ¥ is the partial derivative of the

viscosity with respect to pressure at a constant enthalpy

_ou

_ou
h= dP|,

onl, (3.6)

The coolant density variation dp, can be obtained from a pressure-enthalpy state
relation as

ap. ap.
o) Oh
P, = on |, R

SP=ESh+nSP 3.7
or | Soh+n (3.7)

By eliminating dp, using this relation, therefore, Eqgs. (3.2), (3.3), and (3.4) can be reduced to
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Eo—M +1n,—OP __YioSio S — Viollio 5P — Pio 5.

d dr ' Az, ' Az, Az
(3.8)
+ Vis1,05i-1,0 S+ VictoMizio 6P, p;—1,0 S,
Az, Az, Azi
di&% _ Zzo [ i 1,0 zO)é:zO }5]11' +vi0(hi—1,0 = I )T 5Pi+ (hi—lzz_hio) 5Vi
t . ) ) .
i sz 11010 i (39)
Az ApiO ApiO
=1 )E =2V,
—5\/ = ZO(VH’O VZO)éO 5hi + [vio (Vicio = Vi o _1:| 5P1 + (VH’O Vi) o i
dt Az,p., .0 AZ; ' Az, (3.10)
+b;,0h,_, +b,0P_, +b,0v,
where
; 1| fig ov'z—lo o7
bl - 1 o 1 s 1 5 1 5 _ 1+a ] _ -
31 oo { 2D, » ( )é—l,o gé—l,o
p_ L1 St [ P
b= —| —+ 1,0Vi-1,0 1,07i-1,0 —(+ Ay |- 8
Pio | Az 2D, Hiip
b§3— (2+a)fz10 i1,0Vi-1,0
AZI 2thz()
Substituting Eq. (3.9) into (3.8), the time derivative of pressure perturbation is obtained as
d vio(h_ o —ho)Ex v,
_5Pi =—— > . 5hi - I:piO + (hi—l,O _hio)éo:lapi
dt AZ P71, Az,
P+, — )i Sv. + Vi_1,05i-1,0 ~ YioSio Sh G.11)
Az, Az,

+V, -1,0'i-1,0 5P, +-1o Pio Sv _l_hﬁq’f”i+al—§m5§;i
Az, Az, Ap.no APl

Equations (3.9), (3.10), and (3.11) form a system of linear equations for the

perturbations of enthalpy, pressure, and velocity. This system of equations can be written in a

matrix form as

d
E §Xc,i = Ac,i5xc,i + Bc,i5xc,i—1 + cf,iéﬁ;,i - csc,ié?:c,i (3.12)
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where Ox_; is the vector representing the enthalpy, pressure, and velocity perturbations in the

coolant node i and is defined as

Ox,,(t)=[Sh,,(1),0P. ,(1),0v, ()]

The 3x3 matrices A,; and B, ; and 3X1 vectors ¢, and ¢, are given by

vl_'0|: (hi—l,O ~ hiO)in _1} Vio (hi—l,O B hiO )771‘0
Az Pi Az,
V. (h_ —h ) 42 V.
A_ — _ i0VT-L0 i0/7°2i0 _ i0 . +(h_ —h )f
AZp,T Az,p;, LA
Vio(Viso = Vio)Sio 1
- v.(v. . —v.)n.—1
i AZ,-pl-O AZipiO I: 10( i-1,0 10)7710 ]
Lio. 0 0
Az,
B — Vic109i-10 " VoS0 VieoMlico Picio
- Az, Az, Az,
by, b, by,
Cc.. = I)h _ I)h i0 0
" lALyT AL
r T
c = al _ alfio O
! _AcpiO AcpiO i0 n

(hi—l,O - hiO)
Az

1

_ P+ (hi—l,O ~ hio)é:io

Az,

(vi—l,O —2vy)
Az

1

Note that all the variables in these matrices are those for coolant channel nodes.

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

For an un-heated node i with an orifice, the coolant conservation equations can be

represented as

P

l

PiVi = PitVia
h; =h_,

1
P, - 5 [y |Vi—1 |Vi—1

where ¢ is the pressure loss coefficient of orifice. These equations can be linearized as

Vg 0P, + PV,

30

= vi—1,05pi—l + ,0[_1,05\/[_1

(3.18)
(3.19)

(3.20)

(3.21)



Ho=h | (3.22)

Ob, = oP,, _%gi‘vi—l,o‘vi—l,oapi—l - gipi—l,o‘vi—l,o‘&}i—l (3.23)

Eliminating the coolant density variation dp, from Egs. (3.21) to (3.23) using Eq. (3.7), the
resulting system of equations for enthalpy, pressure, and velocity perturbations can be written in
a matrix form as

A O0x_ +B_0x ., =0 (3.24)
where

VioSio "Villio  —Pio

A= -1 0 0 (3.25)
0 -1 0
Vi1,05i-1,0 VictoTli-10 Pio
B .= 1 0 0 (3.26)

2
_évi—l,o i—10/2 1- gvz Lolli- 1,0/2 _é‘ipi—l,ovi—l,o

3.1.2. Water Rod Perturbation Equations

Applying the same procedure used in deriving the coolant perturbation equations, the

water-rod perturbation equations can be derived from Eqgs. (2.36) to (2.38) as

%&( =A, 0%, +B, 0%, . +¢, 00 (3.27)
where
5XW,1. (1) = [5hw’i (1), 5PW,1. (1), 5vw,i (t)]T (3.28)
The 3x3 matrices Aw,i and B, and the 3X1 vector ¢, ; are given by
{ i+1,0 zo)éo 1} 10( i+1,0 10)7710 (hi+1,0_hi0)
AZH—I Pio Az, Py Az,
z ( i+ hi ) i2 V +(h+ hz )51
A, = TSR l:p10+(h+l 0 =)o :I 01 (3.29)
Az Piollio AZ,+1/),0 TAVY/ A%
VioWVigro = iO)é:iO 1 (Vi0 = 2Vy)
VioViar0 = Vi Mo —1 —
AZ;,1P0 AZH—lpiOl: oo ™ol :l Az,
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ViO 0 0
Az,
B, = Vir05ie,0 ~ VioSio  Vieroflisio Piio (3.30)
Az, Az o Az
by, by, b,
T
P P &
CSW,i :|: hw ,— hwfz , O:| (331)
APy AP
where
; 1 f-+1ovilo OP;110Pis10
by, =—| ——= = —(+ o), |+ 8E.
op, { 2D, Hioro v v
; 1 1 fu ()V‘2+1 0 (a"p'ﬂ 0Yi+1.0
by =—|——+—"—= —————(l+a)n, 10 | T 8Miio0
Pio l:AZi 2D, i+1,0 : :

. V. ) Y
b;} — _i0 _(2+ a) -ﬁ#—l,;l)ﬁl,() i+1,0
P

i hl7i0

Note that all the variables in these matrices are those for water rod nodes.
3.1.3. Fuel Temperature Perturbation Equations

The fuel temperature perturbation equation is derived from the time-dependent fuel
temperature equation in Eq. (2.47) by representing the radial temperature distribution vector,
volumetric heat source, and coolant temperature as

T, ,0)=T,,+5T, (?)
q7.(D=47,,+3q] (1) (3.32)
T ,(t)=T, ,+0T (1)
Expanding the temperature dependent coefficient matrix E,; in Taylor series, and neglecting

higher order terms, we obtain a linear system of differential equation for the fuel temperature
perturbations in the axial node i as

d
D_f.iZéTf,i =F, 0T, +3s, (3.33)
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where Ff . is a tri-diagonal matrix and os i is a source vector, which are discussed below.

Elements of the tri-diagonal matrix F,; depend on the steady state fuel temperatures,

heat conductivities, and their temperature derivatives. Explicit expressions of these elements can
be obtained using Egs. (2.40) to (2.45). The resulting expressions of these elements and source
terms are summarized below. The axial node index i is omitted for simplicity in these
expressions, and all the temperatures represent steady state values. For each row j, f, i fa. i

and f, ; denote the lower-triangular, diagonal, and upper-triangular elements, respectively.

(1) j=1 (fuel pellet center)

fz,j =0
2
Joj=e€i;~ ArY: BT( i~ Ty )
2 ak'+1
Joj =€~ (Ar)? aJT (T ; =T, ;1)
Os;; :‘Sﬁ}”,j

(2) j=2,3,---,n (interior mesh points of fuel pellet)

1 Ar

1 Ok, Ar Ar
Joy=eu; —ma—T{QTm (1_2_6]Tf’j_1 —(HZ—J Tf,.i+l}

1 Ar )3k,
= ——| 1+ .  -T, .
fM,J u,j Z(AI”)Z ( 2r ] aT ( fii f,J"'l)

f,.i—l)

= 5‘7;1
(3) j=n+1 (fuel pellet surface)
1 h, ok,
Joi=e - Ar kg aT ~Trs)
2 h k

g j-1

1
€aj~ (Ar)? BT( £ f,j—l)_A_ (k, % aT( 7~ T )

fd,j:
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fu,j :eu,j

s, ;=045
(4) j=n+2 (cladding inner surface)
fri=ey
Jaj=ea, —?a—T*’(TN _T_f,j+1)_gr_ gki] a_TJ(T_f,j =T, ;1)
4 J
f .= _ggﬂakﬂl )
u,j u f.j-1 f
! d kj r, oT ! !

5sf’j =

(5) j=n+3 (cladding mid-point)

1 ok, d
- 4- T, -T,,
2d> oT ( rg+d/2]( ra =)

1 ok, 1 d 1 d
=e,, ——5—| 4T,  ——| 4- T, ——|4+——— T,
Jas=ea= g BT{ - 2( rg+d/2] S 2( rg+d/2J f’f“}

fu.:eu.— lzakj+l 4+ d (TfA—Tf .+1)
T 24 9T ro4d/2)

fii=ey

dsy,; =0

(6) j=n+4 (cladding outer surface)

2 h, ok,
fii=e; _Ek_;?(T" -T,)
8 akj
fd,j =€ _?B_T(Tcl _Tf,j—l)

hk. ok,
{i%+3(3—k—mj By 20 5 }(TCZ—TC)

r,dT, d k,)oT, d kf a7,
fu,j = O
Os, ;=0s,,+0s,,+0s, (3.34)
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The source term in Eq. (3.34) for the mesh point at the cladding outer surface arises
from the boundary condition perturbation at the cladding outer surface. Since the heat transfer
coefficient at the cladding wall is changed by the coolant enthalpy, pressure, and velocity

perturbations, it can be decomposed into three terms due to enthalpy perturbation dh,, pressure
perturbation 0P, and velocity perturbation dv,. Representing 8T in terms of ok, and OP.

using the relation

dT+a—h

. op

an="2"

dP
oT

dP=cpdT+1_“T
r p

the explicit expressions of these source terms can be written as

(1) Coolant enthalpy perturbation

05,y = E N %(TC—TC,Hh”’ Oh, (3.35)
’ r, d k, oh, c,
(2) Coolant pressure perturbation
5s,p=| L4 2|3 Ku ||| P gy P gy s (3.36)
. r;'l d kcl aPL pc ;

(3) Coolant velocity perturbation

S5y, :[%+§[3—i—mﬂ[%(ﬂ —Td)}&c (3.37)

cl cl c

where ¢ is the coolant specific heat capacity and ¢, is the coolant volume expansivity. The

derivatives of the heat transfer coefficient 4, are computed using the steady state conditions, as

described in Appendix A.
3.1.4. Water Rod Wall Temperature Perturbation Equations

Applying the same procedure used in deriving the fuel temperature perturbation
equations, the perturbation equations for water-rod wall temperatures can be derived from Egs.
(2.48) to (2.50) as

DsidiaTsi :Fsi5T5i+5ssi (338)

where
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_ f, 8 |k +ak”'(T T ) 0 |
11 (A.X)Z S, aj—;l S, sC,i
4k 4 ok, . 4k
F, = 7 T 2k, +——(T,,—2T +T,)) 5 (3.39)
T (AT (Ax) YA ' ’ (Ax)
0 8 1k + Ik (T..-T. ) f
(Ax)z S, aT;’i s, Sw,i 33
fi= 4| 2K, +h,, + O, (T..-T.)
1 = A.x A.x sc,i a n sc,i c,i
fin = adl LTI I, (T,.-T.)
33 A.X' A.X' sw,i a]:wi sw,i w,i

The source term Js,; arises from the perturbations of heat transfer coefficients at wall surfaces.

Since the heat transfer coefficients are changed by the enthalpy, pressure, and velocity of coolant

and water rod, it can be decomposed as

S 51, s, 0 0 0
os..=| 0 |Oh +| O |OP,+| O [6v,,+| O |Oh,. .+ O |OP,. . +| O |Ov, ., (3.40)
0 0 0 S3n S3p 53y

where

4 ahsc i (T T ) + hsc i
s, =—)| — L —_ . —_—
1h j ah ) C,l SC,1 CL‘ }

c,i pii

oh._ . h .
Sip = 4 — (T,-T,.)- = (I-e.T.,)
A.x aP 5 5 p CL‘ > >

c,i c,ipii

4 oh,,
s,=——=—(T,-T.,)
Ax odv,, T "
4 ahsw i (T T ) + hvw i
S, =— - = . —
3h Ax ahW,H—l w,i+1 SW,I C::,H_l
4 ahYW i (T T ) hYW i (1 T )
S\ = — w,i 1 SW,I - : ,w _a'w,i 15 w,i+l
o A.X' a w,i+1 ’ w,i+1Cp,i+l " "
oh, .
S'iv = i = (T'w i+ Ttvw i)
T Axov ’ ’

w,i+1
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3.2. Frequency Domain Linear Equations
3.2.1. System of Linear Perturbation Equations for a Channel

The frequency domain linear equations are obtained by applying the Laplace
transformation to the linearized perturbation equations discussed above. For each axial node i,
the coolant perturbation equations are obtained by the Laplace transformation of Eq. (3.12) as

SO (5)= A 0K () +B iK1 (8)+€7,0G7:(5) = Copi e (5) (3.41)
where s is the complex variable of the Laplace transform, the tilde denotes the Laplace
transformed variables, and OX.; = (&?C,i,éﬁ,i,ﬁc,i)T . Similarly, the water-rod perturbation

equations are obtained by the Laplace transform of Eq. (3.27) as

0%, ()= A, 0%, () +B, 0%, .., (5) + €, .03 0 11 (5) (3.42)

w,i

The fuel temperature perturbation equations are obtained by applying the Laplace

transformation to Eq. (3.33) and can be written in a matrix form as
sD, 0T, (s)=A, 0T, (s)+B, 0% (s)+1,,647(s) (3.43)
Equation (3.43) includes the coolant variable perturbations JX.; because of the source terms

shown in Egs. (3.35) to (3.37) resulting from the variation of the heat transfer coefficient.
Similarly, the Laplace-transformed perturbation equations for water-rod wall temperatures can

be obtained using Eqgs. (3.38) and (3.40) as
sD,, 0T, (s)=F, 0T, (s)+S,,0%,,(s)+8S,, ,0%,,.,(5) (3.44)

The perturbation equation for the heat flux at the cladding wall is determined in a
similar manner. Linearizing Eq. (2.17) around the steady state solution and applying the Laplace
transformation to the resulting equation, we obtain the following equation for the heat flux

perturbation

o7, . oh, .

cl.i C,I p.i

o, = | o, Mo | s
5‘%",1‘ = {hcz,i + (T~ TL,)} oT,, +|: = (T, = T.,) _%} oh.,
' (3.45)

aP ‘ c,it i av ' cl,i _7—;‘,[)5‘}0,[

c,i c,ip,i c,i

ahcl i h, - ahd .
+ (T, -T ) +———(1-a,T,,) |6F, +—(T,

This equation can be written in a matrix notation consistent with Eqgs. (3.41) and (3.43) as
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551;,1' (5)= aq,i5T~cl,i (s)+ d;,[aic,[ (s) (3.46)

The Laplace-transformed perturbation equations for the heat fluxes at the water-rod wall

surfaces can be obtained from Eqgs. (2.19) and (2.20) as

oh, .

(N} p.i

sc.1

. oh. - oh__. ho | .~
5ésc'i = _|:hsﬁ-,i + a]j"l (7—;5,1' _z',i):| 57:'(‘,i +{ = (7—;',1' _7150,1‘) + S:’l :|§hc,i

3.47)
ahsc i hsc i ~ ahsc i ~
+ —’(Tci_Tvci)_—’-(l_a’,ciTci) §Pci+ ! (’Tci_Tvcz‘)b‘vci
aPs,i , o c.i ;,i S , J i ’ o ’
\ oh_ . - oh_ . h . -
5G., . =| h, +—2(T, . ~T,.)|0T, +|—2L(T, ~T,. )-—=|5h, .,
QSW,I |: sw,i anw-i ( SW,I w,t+1)j| SW,I [ahc,ﬁl ( SW,i w,i 1) ;:v,i+lj| w,i+1
(3.48)
ahsw i hsw i s ahsw i ~
+ a— (Tsw,i - Tw,i+1) +—’w (1- aw,i+1Tw,i+1) 5Pw,i+l + o ’ (Tsw,i - Tw,i+1)5vw,i+1
c,i+l w,i+1" pLi+l c,i+l
These equations can be written in a matrix notation as
3q..,(s)=a, 0T, (s)+d’, 6%, (s) (3.49)
5é:w,i (S) = asw,ib‘]:sw,i (S) + dz-w,iéiw,i-%—l (S) (350)

To make the overall computation easier, we first determine the component-wise fuel
temperature transfer functions by solving Eq. (3.43) separately for individual perturbations of the
coolant enthalpy, pressure, and velocity, as well as the volumetric heat source. Then the transfer
functions for the coolant and the water-rod state variables are obtained by substituting these fuel
temperature transfer functions into the corresponding thermal hydraulics and heat flux equations.
The component-wise fuel temperature transfer functions are determined as:

(1) The coolant enthalpy to fuel temperature transfer function is computed by solving Eq.

(3.43) with a unit enthalpy perturbation, i.e., 5h~c,i=1, éf}i =0, 6v,,=0, and

8g7,=0 . The average fuel temperature transfer function =§f r /‘57;” is

determined by a weighted average of fuel temperature perturbations as
T = 3w, 351
j=1

J

where w’ is the weighting factor for the radial mesh j. A volume-weighted average
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was used in this study. The cladding-wall temperature transfer function
ay, =0T,/ é'fz”. is determined by the resulting cladding-wall temperature perturbation.
(2) The coolant pressure to fuel temperature transfer function is computed for a unit

pressure perturbation 8P, =1, with 6, =0, &7,, =0, and 047, =0. The average
fuel temperature transfer function l;}} =0T s 5156,1. and the cladding-wall temperature

transfer function I;}C, =0T,/ 5}2,i are determined as in (1).

cl,i
(3) The coolant velocity to fuel temperature transfer functions are computed for a unit

coolant velocity perturbation &7, =1, with 8k, =0, B, =0, and 047, =0. The

average fuel temperature transfer function &, = 5f ¥ 16v,; and the cladding-wall

temperature transfer function ¢;, = 67,/ 6V, , are determined as in (1).

cl,i

(4) The power to fuel temperature transfer functions are computed for a unit power

perturbation 847, =1, with 5/3” =0, 6P,=0, and &7,,=0. The average fuel
temperature transfer function c?}f = §f ri ! §q~;"i and the cladding-wall temperature

transfer function d’,, = &7,

cl,i

/64y, are determined as in (1).

Using these component-wise transfer functions, the total perturbations of the average

fuel temperature and cladding wall temperature in the axial node i are obtained as

57:;,? = d;‘f §ﬁc,i + [;Tlf §E,i + E;‘f 5‘7c,i + j}f 5&;’,5 (3.52)
57:0[,1‘ = &;cl 5]:;0,1‘ +l;7i'cl 5ﬁc,i + 6.'Yi'clé“’;c,i + d~;'cl§é;’,i (353)

Substituting Eq. (3.53) into Eq. (3.46), the perturbation of heat flux at the cladding wall is

determined as

éﬁ;,i = 5§,i5ic,i + Czq,i é;’l (3.54)
where
j oh, i Ji
@i hy;+ <k (T,,-T.,) |dr,

cl.i
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v

cl.i

oh
cl,i cl,i cl.i
=T.,)— + hy +—T,,; a
ahc,i ( o ) p,i |: aT'cl.t ( ):| "
a T, -T.)+—=—(1-aT. )+| h, +ah‘”(T T.) |b;
o aPcz ‘ c chz ‘ a cl.i "
oh, . h
- (T, _Tc,i)+|:hcl,i R T (T,; )}CTCI

v,i

Similarly, by solving Eq. (3.44), the component-wise water-rod wall temperature
transfer functions are determined as

ﬁv,i = As,ié‘ic,i + I;S,ié‘j2 (355)

w,i+l
where

As,i = (st,i _Fé‘:i)_ls"'i

Bs,i = (SDs,i _Fs,i)_lsw,i

Substituting Eq. (3.55) into Egs. (3.49) and (3.50), the perturbations of heat fluxes at the water

rod wall are determined as

5g.,=al 6%, +b’ %, (3.56)
8q,,, =al, 0%, +b! 0%, (3.57)

where

a, , =la,,;0,0]A  +d

JLI

b’ =[a a, ;,0,0]B,

JLI

JWI _[0 0 ale]A

1B, +d]

JWl le

b, =[0,0,a

Eliminating 647, using Eq. (3.54) and &j,., using Eq. (3.56), the Laplace-transformed
coolant perturbation equations in Eq. (3.41) are reduced to
(sI-A.,-D,)0%,,-B 0%, ., +C 0%, =d,,0G, (3.58)

where

_ ~T ~T
D, ,=c,a, —c a

q,i sc,itvse,i
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C.=c b’

sc,i o sc,i

d, =d

a.i€ri
and I is the 3%x3 identity matrix. In a similar way, the Laplace-transformed water-rod

perturbation equations can be written as
(sI-A, )X, (5) =B, +D,;)0K,i1(5) —C, i K1 (5) =0 (3.59)
where

T T
D, =cgi@gin + i)

_ T
C wi — csw,iasw,i+1

Defining a combined unknown vector X, ; for each node i of a thermal-hydraulic

channel j as Ox,; =(J%,, ;,0%,., )", Eqgs. (3.58) and (3.59) can be written in a single matrix

equation as

D, U, 0 - 0 0 0 ox; | [ s L ,0%; |
L2.j D2,j Uz,j o 0 0 0 5X2-j S2.j
0 L, Dy; - 0 0 0 OX; S5
: : R : : : = : (3.60)
0 0 0 DI—2,j UI—2,j 0 5x1—2,/‘ 812,
0 0 0o - Ll_l,j DI_LJ. UI—l,j 5X1—1,j Si,j
I 0 0 0o - 0 L, D, 1 5x1’j 1[5 _Ul,j5xl+1,j_
where
L -B,;, 0 D sI-A,,-D,; 0 U 0 C., 361
S ) ] —C,.j sI-A,,;; S0 -B,,,;+D,, ;) oD
d,, . files
si,j:{ o f}sqj (3.62)

Here, g; is the pin power of the channel j and f; is the power fraction of axial node i in the

channel j. Note that the term U, ;0x,,, ; includes the water-rod inlet perturbations X, ; only,

since

U 5 _ 0 Ccl,j 55'(0,1-%—1,]‘ _ Ccl,jaiwl,j 363
1% = | —-B,,;+D,, )| 6% =B, . +D_, )% (3.63)

wl,j wl,j wl,j wl,j wl,j
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Similarly, L, ;0% ; includes the coolant channel inlet perturbations 0%, ; only, since

-B,. 0][d%,,| [-B, 6%,
LL‘,.(SXOY‘,.:{ ol,j 0}{&2 Z/}{ LJo O’J} (3.64)
wo,J

By solving Eq. (3.60) for the unit perturbation of each input parameter, the partial
derivatives of state variables with respect to input parameters can be determined as:

axi,j

0 with 5XC0,], =(1,0, O)T, 5Xw1,j =(0,0, O)T’ S ; =0 (3.65.a)
c0,j
).
b with 5Xc0 = (0,1, O)T, 5Xw1 = (O,O,O)T’ S; =0 (3.65.b)
dp, ) " )
oX. .
a i,] with 5Xc0,j — ((), O, 1)T, 5Xw1,j = (0,0, O)T, Si,j =0 (365C)
VcO,j
oX. .
S with 8%, =(0,0,0)", 8%, =(1,0,0)", 5, =0 (3.65.d)
wl, j
oX. .
S With 8%, =(0,0.0)", 8%, =(0.1,0)", 5, =0 (3.65.¢)
wl,j
oxX. .
: L7 with 5Xc0,j — ((), O, O)T, 5le,j = (O, 0, ])T, Si,j =0 (365f)
le,j
X. . 3
5 %L with 5X60,j =(0,0, O)T, 5XW1’J. =(0,0, O)T, S = [dJTc’i,jfij,O]T (3.65.g)
q;

These partial derivatives are the responses of state variables to the channel input parameters. The
responses of state variables to the external input parameters (e.g., core power, total flow rates,
feed water enthalpy, etc.) can be determined using these partial derivatives and the responses of

channel input parameters to the external parameters.

The transfer functions for the unheated orifice node are determined by the Laplace

transform of the linearized equation given in Eq. (3.24) as
0%, =—-A,'B,6%x, =HOX, (3.66)
Inverting Eq. (3.24) analytically, Eq. (3.66) can be written as
Oh, = oh, (3.67a)
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5ﬁ0 = HPhé‘ljlin + HPPgﬁin +H, 0V, (3.67b)

5‘70 = Hvll5ﬁin + HVPgﬁin + vaaﬁin (3670)
where
H,, =~{Evi 12 (3.682)
H,,=1-{n,v. /2 (3.68b)
HPv = _gpinvin (368C)
1 1 )
H,=— _éovo + finvin +—- é/”ofmvovin (3.68d)
Py 2
1 1 )
H,=— NV, +1,v,, + = gi 0M:VoVin (3.68¢)
Po 2
— pin
va - (1 + gﬂov()vin ) (368ﬂ

0
At the non-heated inlet orifice node, the coolant is subcooled and thus it is almost incompressible.

Asaresult, H,, , H ,,and H , are almost zero, but H,, and H  are almost one. Consequently,

Eq. (3.67) can be approximated as

Sh, = Sh, (3.69a)
0P, =8P, +H, 7, (3.69b)
5, = o7, (3.69¢)

3.2.2. Inlet Boundary Condition Perturbations

Under the assumption of complete mixing, the mass and energy conservation equations
in the lower plenum can be represented as in Egs. (2.8) and (2.9). These equations include the
time variations of the water mass and enthalpy in the lower plenum. However, as the initial
implementation of multi-channel capability in SCWRSA, the time derivatives were neglected,
and the equations were replaced with the algebraic boundary equations for two bounding
approximations. One is the instantaneous mixing approximation in which the lower plenum mass
is assumed to be zero. The other is the constant mixed-mean enthalpy approximation, which is

equivalent to an assumption of infinite lower plenum mass.
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Under the instantaneous mixing approximation, the conservation equations for the lower

plenum can be approximated as

J J
DW= D W W, =wy (3.70)
j=1 j=1
J J
By Z We = Z th,iji +h W, 3.71)
j=1 j=1
Po;=F, (3.72)

Taking the variations of Eq. (3.70) to (3.72) yields

J J
z §Wcj = z 5Wwy’ + 5Wdc = 5WT (373)
J=1 j=1
J J
Showy =D Ohyo W, + D (B =)W, +8h,w, +(hy, —hy)ow, (3.74)
J=1 j=1
0P, ;=0F, (3.75)

The flow rate variations are determined to satisfy the equal pressure drop boundary conditions.
The steady state solution satisfies the equal pressure drop boundary condition, and thus the
variations of individual channel pressure drops should satisfy the equal pressure drop boundary
condition.

SAP, = AP, =---= 0AP, (3.76)
OAP

wl

— AP, =---= AP, (3.77)

In the constant mixed-mean enthalpy approximation, the inlet enthalpy of coolants into
all the fuel assemblies is held constant at the steady-state mixed-mean enthalpy of water in the
lower plenum in view of large capacitance of the lower plenum. Thus, Eq. (3.71) is reduced to

h., = constant (3.78)
and the variation of mixed-mean enthalpy of water in the lower plenum becomes

Sh, =0 (3.79)
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3.3. Transfer Functions and Frequency Responses

The inlet boundary condition perturbations given in Eqs. (3.73) to (3.77) depend on the
state variable perturbations determined by Eq. (3.60). Thus, these equations should be solved
simultaneously with Eq. (3.60). As discussed in Section 3.2.1, the partial derivatives of state
variables with respect to input parameters can be determined by solving Eq. (3.60) for the unit
perturbation of each input parameter. Using these partial derivatives, Egs. (3.73) to (3.77) are
reduced to a system of equations for inlet parameter perturbations. By solving these equations for
a unit perturbation of each of external parameters (e.g., core power, total flow rates, feed water
enthalpy, etc.), the responses of channel input parameters to the external parameters are
determined. The responses of state variables to the external input parameters are then obtained
by combining the responses of channel input parameters to the external parameters and the

partial derivatives of state variables with respect to input parameters.

The coolant outlet pressure of every channel is held constant, and thus its variation due
to the flow perturbations should be zero. Using the partial derivatives in Eq. (3.65), this

condition can be written as

OP,  =codv,y  +c20v,,  + 0h +C 0P +C 0P, +ci0h, +c.op
=l + o0V, +COh,+C (0P, +H , 0v, )+ 0P, +c Oh, +c.0p (3.80)
= LoV, +CoOv,,  +C Oh, +C 0P, +c 0P, +ci0h, +cldp=0
where
¢ = ;)Pcl,j = I, o= F,,; o= 9F,; ’
Veo,j Ly I, Iy,
e VR N V. TR

C.= 5 Cc' = s G 5
¢ oB,, 7 on,, ° dq; dp
H , . is the response of the channel j orifice outlet pressure to the inlet velocity, and p is the

core thermal power. Similarly, the outlet pressure perturbation of water rod given in Eq. (3.75)

can be written as

oP

wO0, j

=, 0V, +C 0V, +co.0h +c, 0P, +c, 0P, +c).6h, +c|.0p=05P, (3.81)

where
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oP oP oP oP

1 w0, j 4 2 w0, j 3 w0, j 4 w0, j
¢, =——+c H ., c . =—>= ¢, = , €, = ,
wj avCO,J- wp pv.J wj aVWIJ ] ahcoyj J aPCO,j
o = an(),j S = an(),j 7 _ an(),j %
Y anl,j S ahwl,j n aqj' dp
Note that Eq. (3.80) implies Eq. (3.76) since SAP, =JP,, ;—JP, ; =JF,,, and Eq. (3.81) implies

Eq. (F.77) since OAP,=0JPF,,;—OP,

w wl,j

=P, - 6P

wl *

As a result, the flow perturbations

satisfying the equal pressure drop boundary conditions can be determined by solving Egs. (3.80)

and (3.81). Equations (3.80) and (3.81) can be solved for 5vc0’ j and 5Vw1,,,~ as

1 2.3 2 3 2 4 2 4 2
§vc(),j = F [(chcwj —C,,;C )5hc() + (chcwj —C,;C; —C )5PLP
J

2.5 25 2 6 2 6 2.7 2 7
+(c;c,y — €€ )OPB, +(cie, —c,ic)0h,, +(cie, — ¢, )0l (3.82)

= biﬁhco +bj.5PLP +bj,.5PW, +bjj§h +bf,.5p

wl

1
5vwl,j = —F[(ci_jcij - cfvjcfj YOh,, + (ci_icii - cfvjcfj - c:j YOP,,
j
+(cijcfvj - civjcfj )OP, + (cijcfvj - civjcfj Yoh,, + (cijcfvj - civjczj )op] (3.83)
=b,,0h,+b. 0P, +b, 6P, +b, 0h, +b 5p

_ 12 2.1
where Dj =C;Chj —CoiChi and

1 _,23 23 2 _ 2.4 2 4 2
b, =(c ¢, —¢c:)I D;, b =(c,c,,—c,c;—c;) D,

cj - wj & o wj
3,25 2 5 4 _ 26 26 S _ 2.7 27
by =(cgey =€) Dy by =(cgey; —c,e) D, b =(c e, —c,65)1 D;,
1 _ 13 13 2 _ ol 4 1 4 1
b,y ==(eye,; —Cycy) I D;y by ==(cye,; —c,,65=¢;) 1D,
3 _ 15 15 4 _ 16 1 6 S _ o0 7 17
b,; =—(c,c,; —c,c;)I D;, b, =—(c,c,, —c,c.;)D;, b, =—(c,c,—c,c;)/ D,

In the instantaneous mixing approximation, the mass conservation equations in Egs.

(3.73) can be written in terms of input parameter variations as

J J ov,. Op., . J ov, .
Z 5Wq‘ = Z Wcj |:—LOJ+&:| B Z WCJ' |:$ +@5h00 + 7760 5}10
=l j=l Veo,j  Peo,j J=l Veo,j  Peo Peo (3.84)
J
= ZI: w, (b0, ; +b30h +b.5P,,) = 6w,
=
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ov

%p : L5 7

WO] w0, j WO o w0,j w0, w0,/ w0, j
Zw —==0h,,  + ; oP,, j

wO,j IOWO,j Jj=1 wO,j IOWO,J w0, j

4 1
— 1 2 3 4 5 6 7
= ZWWj —(cvj§vco,j +cvj§vwl,j + cvj§hco + cvjﬁPLP + cvjﬁPW, +cvj§hw, + cvjé‘p)

va,J

+

w0, (€, OVeo; + €OV, +CpOh o+, 0P, +¢, 0P, +c,fj5hwl+c,7lj5p)+nwo’j OP, | (3.85)

w0, j w0, j

mj

J
=D w, (b, 0v,,; +bo0v,,  +b.Ohy+b, P, +b) 6P, +b°6h,, +b).6p)
j=1

=J0w, —ow,,
%) o)
where & = P , 77=—’0 and
on|," " op|,
1 _ va,j 4H 2 av 3 _ ava,j 4 _ ava i
Cy =3 toull, 6= 0 6y = I
v 8v oh oP
c0,j wl,j c0,j c0,j
oo MW, o= W, o v, ; dq;
vi > Yy T > Sy
oP,, . oh,, . aqj dp
1 _ ahw(),j + 4 H 2 _ ahw(),j 3 _ ath,j 4 _ ath,j
Chj = 3 Chitlpvjo Cnj = 3 » Gy = o G = FY-
ch,j vwl,j c0,j
O, o Ok, Ok, dg
hj > Thj T > Thi
oP,, . oh,, ; aqj dp
1 _ :
b]; +b;1] - b3- — 5(0 , b4 — 77(0
ch,j c0 pc()
1 2 3
G é:wo,j 1 42 _ Gy §w0,j 2 43 Gy fw&j 3
Bl =y 2 g2 o D S0 2 s T B0
vw(),j pWO,j vw(),j pr,j va,j pw(),j
4 5 5
s Gy é:wo,j s, oy s G, é:WO,j s 16 _ Gy é:wo,j 6
le.i_ + Ch.i+ ’ bmj__+—ch.i’ bmj__+— hj>
vw(),j pr,j pw(),j vw(),j pr,j va,j pw(),j
7
c. &
7 _ vj w0,j 7
bmj =—+ Chj
va,j IOWO,j

Similarly, the energy conservation equation in Eq. (3.74) can be written in terms of

input parameter variations as
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J J
Sh,w, = Z W, O0h,  + Z (hyo ;= ho)OW,; + 8wy, + (hy — b )Sw,,
j=1 j=

J

_ 1 2 3 4 5 6 7

= Z W, (chj§vco,j + chjé'vwl,j + chj§hco + chj§PLP + chjé'PW, + chjé'hw, + chj§p)
=1

J

w0, (g =o)L Bv,g + 58, 4D}, 8h, +bE P, +b3,5P,, +b5,5h,, +b] 5p)
J=1

+5hdcwdc + (hdc - hco)5wdc

This can be further simplified as

J
> (by6v,,, +by0v,, b, 0hy +biSP,, +b, SP,, +b{Sh,, +b]5p) (3.86)
Jj=1 .

= hdcwdc + (hdc - th )§Wdc

where
b}lzj =W, [C}llj - (hWO,j _hCO )bylm], b;] =-W, [C;j — (hwo,j _ hc() )bij],
bl = w, =, L) — (g, ~ bl 1, b =—w [k~ (g, — o b5
by =—w, s~y — o)1, B =—w et — (o —ho bS],
byy = =Wyylel =g =ho)by,]

Substituting Egs. (3.82) and (3.83) into Egs. (3.84), (3.85), and (3.86) yields the system

of equations for three unknowns oh,, 0P,,, and OP

LP> WI’
a a a | h, a al 1 0 0
a, a a || oP,|=-|a |6p—|a.|oh,+|1|ow,+| -1 |Sw,+| O |Sh, (3.87)
a, a a ||OP, a, a 0 h, —h., W,
where
(bl +bY), Zw (byb2 +b),

J

Gbubl al = wbibl, a i bib’

j=1

1
aL
3
a.

S,
Jj=1
Sw
J=1

Q»—-
[
M\

mj~ wj mj mj mj~ wj

w,, (blbL +b2 b +b1), a? —ZWWJ(bl D +DLDY + D),
=1

.
Il
LN

QL)J
I
M“

w,; (b,b> +bybl +b ), a —waj(bl b +by by +by),
=1

mj— wj mj mj mj~ wj

.
Il
LN
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J
al = w, (b +b. b, +b))
j=1

mj~ wj

J

1 _ Z 171 271 3
a, = (bhibc:i + bhibwi + bhj
j=1

J
), a, =Y (byb2+byb +by),
j=1

yoc = wj

J J
3 113 213 5 4 1.4 24 6
ay =D (byb +byby +by), ay =D (byby +byby, +by),
= =

J

a, =Y (byb} +bib), +b;)
J=1

By solving Eq. (3.87) for the unit perturbation of each external parameter, the partial

derivatives of 8P, , oh,,, and OP,, with respect to external parameters can be determined. For

wl ?

example, the partial derivatives 0P, /dp, dh,,/dp, and dPF,,/dp can be obtained by solving Eq.
(3.87) with ow, =0w, =6h, =6h,=0P,, =0 and Op=1 . Substituting these partial
derivatives into Eqs. (3.82) and (3.83), dv,,;/dp and dv,, ;/dp are obtained. By combining

these responses with the responses of state variables to the channel input parameters, the
responses of state variables to the external input parameters are determined. For example, the

state variable changes due to unit power change can be obtained as
i _

ox ox,; oh, OX,; 0P, OX,; dv,, OX,, oh, OX,, P,

— > C + i C + > i + > W. + > W.
ép oh,; dp OP,, dp dv,, dp oh,, dp OP,, dp
ox,; dv ox

wl,j +
avw,,j op op

_ ox;; dh, + X, ; dP, + X, ; + X, ; H e, + ox,; dF,
oh,, dp P, dp v, OP,; "’

N ox,; v, ; N ox, ; dq,
v, , dp  dq; dp

J

+ Ll

(3.88)

In the constant mixed-mean enthalpy approximation, Eq. (3.79) needs to be satisfied

instead of Eq. (3.74). As a result, Egs. (3.82), (3.83), (3.84), and (3.85) are reduced to

OV, = bfjﬁPLP +b3j§PW, +b:;5hw1 +bfj§p (3.89)
5vw1,j = bfzjé‘PLP +b»3vj5Pw1 +b::j5hw1 +bvij5p (3.90)
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J J
Z Sw, = Z w,; (by6v,,  +b}6F,,) = 6w, (3.91)
j=1 j=1

J J
Z Sw,, = Z w,, (b, OV, +b.0v,,  +bLSP, +b). 0P, +b)6h, +b].5p)
< = (3.92)

=d0w, —ow,,
Substituting Egs. (3.89) and (3.90) into Egs. (3.91) and (3.92) yields the system of equations for

two unknowns JP,, and oP,, as

a> a || oP a a 1 0
[ai aMéP} i -LJap _LJ&M {J‘M {_J MW (3.93)

By solving Eq. (3.93) for the unit perturbation of each external parameter, the partial derivatives

of P, and 0P, with respect to external parameters can be determined. For example, the
partial derivatives dP,/dp and OP,,/dp can be obtained by solving Eq. (3.93) with
ow, =ow, =0h, =0P, =0 and dp =1. Substituting these partial derivatives into Egs. (3.89)
and (3.90), dv,,/dp and dv,, ;/dp are obtained. By combining these responses with the

responses of state variables to the channel input parameters, the responses of state variables to
the external input parameters are determined. For example, the state variable changes due to unit

power change can be obtained as

Ox, _ ox,; oP, N X, ; N X, ; g Wy N ox,; dF, .
op aPcO,j dp avco,j aPco,j " op anI,j ap (3.94)
N ox,; v, ; N ox, ; dq;

o, dp  dq; dp

3.4. Feedbacks and System Characteristic Equation

The closed loop transfer functions and the system characteristic equations are derived
by taking into account the hydraulic and reactivity feedbacks. The hydraulic feedback is
determined by the boundary conditions imposed on the thermal-hydraulics equations. The
reactivity feedback of a SCWR is mainly through the core-average fuel temperature, and coolant
and moderator density perturbations. As discussed in Section 3.3, the inlet boundary condition
perturbations are already included in determining the transfer functions in Egs. (3.88) or (3.94).

Thus, this section describes the reactivity feedback and the system characteristic equation.
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3.4.1. Reactivity Feedbacks

The perturbations of coolant and water-rod state variables and fuel temperature change
the core reactivity through the coolant and moderator density and Doppler reactivity feedbacks.
The core reactivity perturbation in turn results in the neutron flux variation. In the point kinetics
approximation employed in this study, the relation between the power (i.e. neutron flux) and

reactivity perturbations is given by the so-called zero-power transfer function [18] as

P (s) =D(s)9P(s) (3.95)
_ . B |
d(s) = p, [Awg H&} (3.96)

which are obtained by linearizing Eqgs. (2.21) and (2.22) and subsequently applying the Laplace
transformation to the resulting linearized equations. In the point kinetics approximation, the time
dependence of the flux shape is neglected, and the initial flux shape is used in forming the

kinetics parameters.

Substituting the state variable changes due to unit power perturbation in Eq. (3.88) or
(3.94) into Eq. (3.52), the perturbation of average fuel temperature of the axial node i in channel

J due to unit power perturbation is determined as

Favg 7 D ~
STy Shyy s SR S

5p  miTs, +0r 5p Ty 5p i

f (3.97)

The coolant and water rod density perturbations are obtained in a similar way by substituting Eq.

(3.88) or (3.94) into Eq. (3.7) as

5., Sh, 5P,

T T (99
op Y Op Y Sp

0. . Oh,. oP. .

pm,l = égwij — +77wl/ — (3.99)
op 7 Op 7 6p

The reactivity feedback is calculated with the weighted average values of these fuel
temperature, and coolant and moderator density perturbations. The square of power distribution

is used as the weighting function. That is, the average of a perturbation dx is computed as
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J 1
2
S 2qv Zz5xiipij‘/ij
a“x:j HOlpOTdV. 545 (3.100)

Jlrmrav S5y

j=1 i=1

where j is the index for thermal-hydraulic channels and i is the axial node index. The pin

power g; of channel j and the power density p, of the axial node i of channel j are computed

as
q,-=f’p (3.101)
-
= fijqj‘ _ fijfjp (3.102)
a;Az; naAz
where
p = reactor power
f;=power fraction of channel j
Jf;= power fraction of axial node i in the channel
n;= number of fuel pins in channel ;j
a;= area of fuel pellet in channel j
Az;= mesh interval of axial node i
Equations (3.101) and (3.102) imply the following relations:
J
> fi=1 (3.103)
j=1
1
D fi=1 (3.104)
i=1
V,=n,aAz (3.105)

Denoting the total derivatives in Egs. (3.97) to (3.99) by G;, the core-average dx due to power

perturbation dp is computed as

52



J I
22 Gy f} Inja;Az)

S =2l Sp (3.106)
2 p2
22 (S  njaAz)

j=1 i=1

Denoting the core-average perturbations of fuel temperature, coolant density, and water

rod density as

ST =T/5p (3.107)
P =T6p (3.108)
P =T)p (3.109)

the total reactivity feedback can be represented as
B, =T6p=(a, ] +a, I +a, I)6p (3.110)
where ¢, , @, , and «, are the Doppler, coolant density, and water rod density reactivity

coefficients, respectively.
3.4.2. System Characteristic Equation

The net total perturbation of reactivity and power is given by the sum of the external

perturbation and feedback [19]. Therefore, Egs. (3.95) and (3.110) can be written in a matrix

I R 3.111)
1 _Fl 5ﬁt - 5lbext e

where the subscripts ¢ and ext denote the total and external perturbations, respectively.

form as

Linear system instability occurs when the system becomes self-excited, which means
that the system continues to oscillate in an un-damped fashion even when the external forcing
function is removed. This occurs when the determinant of the matrix is zero. Therefore, the
unique characteristic equation of Eq. (3.111) is given by

@I, -1=0 (3.112)
This is the characteristic equation for the thermal-nuclear coupled instability. By solving Eq.

(3.111), the reactivity-to-reactivity closed loop transfer function can be determined as
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G o ()
The transient response is determined by the roots of the characteristic equation. After a
sufficient time, it is dominated by the root that has the largest real part. If the real part of this
dominant root is positive, the response to a perturbation would grow indefinitely and the linear
system is unstable. If it is negative, the system is asymptotically stable. Oscillations introduced
in the system are damped to the extent determined by the decay ratio, which is defined as the
ratio between first and second peaks in the impulse response. Denoting the dominant root by 4,
the decay ratio of the system can be determined as
R = ¢ 2 ReD/m(d) (3.114)
In this study, following the standard approach for BWR stability analysis, this decay ratio is used
as the criterion for stability. The dominant root is directly searched in the complex plane using
the Newton-Raphson method combined with the line search and back-track algorithm [20], as

described in Appendix B.
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4. Preliminary Tests

The computational models discussed above have been implemented into the frequency
domain linear stability analysis code SCWRSA. The functionality of the modified program was
confirmed by reproducing the previous single-channel analysis results. Preliminary tests of the
new multi-channel analysis capability have been performed using two-channel models derived

from the U.S. Generation IV SCWR reference design [11].

The reference SCWR design is a thermal-spectrum reactor with a rated core thermal
power of 3575 MW and a rated core flow of 1843 kg/s. The planar view of SCWR is shown in
Figure 4-1, and the main design parameters are summarized in Table 4-1. It is noted that no
detailed core design analysis has been performed and the core performance parameters represent
the design goals. For example, the total peaking factor and outlet temperature are targeted design
values, and the related design parameters are derived from these target values. As mentioned in
Section 2, the core includes 145 fuel assemblies, each of which has 300 fuel rods arranged in the
square lattice and 36 square water rods. About 90% of feedwater flows downward through the
water rods into the lower plenum, and then it is mixed with the rest of the feedwater from the

downcomer in the lower plenum. The mixed coolant flows upward through the fuel channels.

FAs

Core barrel Downcomer

Figure 4-1 Planar View of SCWR Core
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Table 4-1 Design Parameters of SCWR Reference Design

Parameter Value

Thermal power 3575 MW

Electric power 1600 MW

Thermal efficiency 44.8%

Operating pressure 25 MPa

Reactor inlet/outlet temperature 280/500°C

Reactor flow rate 1843 kg/s
FUEL PIN

Fuel pin OD 10.2 mm

Fuel pin pitch 11.2 mm

Cladding thickness 0.63 mm

Cladding materials ODS steel

Fuel pellet OD 8.94 mm

Fuel composition UO,, 95% TD

Fuel enrichment

5% wt. average

Heated length 4.27 m
Fission gas plenum length 0.6 m
Total fuel pin height 4.87 m
Fill gas pressure at room temperature 6.0 MPa
FUEL ASSEMBLY
Number of fuel pins per assembly 300
Number of water rods per assembly 36
Water rod side 33.6 mm
Water rod wall thickness 0.4 mm
Number of instrumentation rods per assembly 1
Number of CR fingers per assembly 16
Number of spacer grids 14
CORE
Number of fuel assemblies 145
Equivalent diameter 391 m
Core barrel ID/OD 4.3/4.4 m
Average power density 69.6 kKW/L
Average linear power 19.2 kW/m
Peak linear power 39 kW/m
Axial/Radial/Local/Total Peaking Factor 1.4/1.3/1.1/2.0
Core pressure drop 0.15 MPa

Water rod flow

1659 kg/s (90% of nominal flow)
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Two-channel test problems composed of average and hot channel assemblies of the U.S.
SCWR reference design were derived. The radial power peaking factor was assumed 1.3, and the
axial power distribution was assumed a cosine shape. The active core height was assumed
4.27 m, and non-heated nodes of 0.3 m height were introduced below and above the active core,
to model the lower and upper gas plenums. The inlet orifice coefficients for average and hot
channels were determined such that the coolant outlet temperatures of the both channels are the
same. Considering the pressure losses due to fuel pin, spacer grids, and abrupt contraction and
expansion at core inlet and exit, the pressure loss coefficients of inlet orifices were estimated to

maintain the targeted core pressure drop (0.15 MPa).
4.1. Iteration Scheme for Flow Splits

Several iteration schemes to determine the flow rates of individual thermal-hydraulic
channels were examined prior to devising the iteration scheme described in Section 2.3.1. Since
the detailed information of the US reference SCWR design is not available at this point, various
two-channel models consisting of average and hot channels were tested. The iteration scheme
adopted from the BWR stability analysis code LAPURS [21] was found unstable when applied to
SCWR flow split calculations. It was also observed that separate iterations for coolant and water-
rod flow rates without considering the heat transfer between coolant and water rod converge
slowly and often shows small oscillatory behaviors. Therefore, a new iteration scheme was
developed such that the coolant and water-rod flow rates are determined simultaneously by

taking into account the heat transfer between coolant and water rod as described in Section 2.3.1.

Preliminary test results showed that the new iteration scheme converged flow rates with
only five to six iterations for both the Dittus-Boelter and Jackson heat transfer correlations. As an
example, the steady-state pressure and temperature solutions of a two-channel test problem are
presented in Table 4-2. It was assumed that among 145 assemblies of the SCWR core, 8
assemblies average belong to the hot channel. The iteration histories of pressure drops and flow
rates are also shown in Figures 4-2 and 4-3. The pressure loss coefficient of inlet orifice was 105
for the average channel and 31 for the hot channel. Initial flow rates of each channel were
determined to be proportional to the channel power. A convergence criterion of 0.001 was used

for the relative difference in pressure drop between two channels.
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The average and hot channel pressure drops converge to each other for both the coolant
channel and water rod. The boundary condition imposed on the coolant outlet pressure (25 MPa)
is also satisfied. These results show that the equal pressure boundary conditions are satisfied as
required. The converged pressure drop across the water rod is about five smaller than that across
the coolant channel, because of much larger flow area (see Figure 2-4). As shown in Figure 4-2,
to satisfy the aforementioned convergence criterion of 0.001, five and six iterations were taken
for the Jackson and Dittus-Boelter correlations, respectively. However, it is noted that the
Jackson and Dittus-Boelter correlations showed no difference in the number of iterations; for
some other test problems, the Jackson correlation took an additional iteration than the Dittus-
Boelter correlation. The Dittus-Boelter and Jackson correlations give slightly different converged
pressure drops across the coolant channel and water rod. This is due to the difference in heat
transfer between coolant channel and water rod. Figure 4-3 shows that the Dittus-Boelter and
Jackson correlations resulted in the same coolant flow rates, but slightly different water-rod flow
rates. As shown in Figure 4-4, the coolant and water-rod temperature distributions of hot channel
are very similar to those of the average channel, since the orifice coefficients were determined
such that the coolant outlet temperatures of the average and hot channels are the same. However,
because of a higher pin power, the average fuel temperature of hot channel is significantly higher

than that of average channel.

Table 4-2 Pressures and Temperatures of Two-Channel Test Problem

Heat transfer coefficient Dittus-Boelter Jackson
Thermal-hydraulic channel Average Hot Average Hot
Inlet orifice coefficient 105 31 105 31
Pin power (kW) 80.89 104.27 80.89 104.27
Coolant channel flow rate (kg/s) 0.0414 0.0556 0.0414 0.0556
Pin power to flow ratio 1.9518 1.8755 1.9517 1.8758
Water rod flow rate (kg/s) 0.3157 0.3525 0.3159 0.3495
Water rod inlet pressure (MPa) 25.1110 25.1110 | 25.1078 25.1077
Lower plenum pressure (MPa) 25.1417 | 25.1417 | 25.1393 | 25.1393
Coolant outlet pressure (MPa) 25.0000 | 25.0000 | 25.0000 | 25.0000
Coolant pressure drop (MPa) 0.1417 0.1417 0.1393 0.1393
Water rod pressure drop (MPa) -0.0307 -0.0307 -0.0315 -0.0316
Water rod inlet temperature (K) 553.15 553.15 553.15 553.15
Water rod outlet temperature (K) 631.29 630.84 626.50 625.97
Lower plenum temperature (K) 625.19 625.19 620.89 620.89
Coolant outlet temperature (K) 773.98 773.72 774.16 772.89
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4.2. Stability Analysis

For coupled thermal-nuclear stability analysis, the reactivity feedback coefficients were
calculated using the WIMSS lattice code [22]. Assembly calculations were performed with the
method of characteristic solution option. The Doppler, coolant density, and water rod density
coefficients determined with average fuel temperature, coolant density, and water rod density are
-1.4x107°/°C, 1.0x107/kg-m~, and 7.5x10”/kg-m~, respectively. Relative to a typical LWR, the
Doppler coefficient is somewhat smaller due to the higher fuel enrichment. On the other hand,
the coolant density coefficient is much smaller than the moderator density coefficient of LWR,
since the separate water rods are the main neutron moderator. The sum of the coolant and water-
rod density coefficients has the same order of magnitude as the moderator density coefficient of

a conventional LWR.

Before performing the stability analyses, preliminary verification tests of the modified
SCWRSA were performed using the two-channel model described in Section 4.1. The state
variable responses evaluated at a near-zero frequency (10~°*rads/s) were compared with the steady
state solution changes evaluated directly by perturbing the power by 1 %. Due to the final value
theorem of the Laplace transform, the steady state value of a response to a unit step change (i.e.,
steady state gain) should be equal to the zero frequency response (i.e., the system transfer
function evaluated at the zero frequency). Figures 4-5 and 4-6 compare the axial distributions of
coolant enthalpy, water rod enthalpy, and fuel temperature changes of the average and hot
channels. It can be seen that for both the Dittus-Boelter and Jackson correlations, the zero
frequency responses agree very well with the steady state gains determined by direct perturbation

calculation. These results suggest that the response functions are correctly calculated.

In order to investigate the effects of flow redistributions due to power perturbation, the
frequency response and decay ratio of thermal-nuclear coupled stability of the above two-
channel model were compared with old and new results of a single channel model. The new
single channel results were obtained for the average channel model using the modified SCWRSA
code with the multi-channel analysis capability. The old single channel results were obtained for
the same average channel model using the previous version of SCWRSA, in which the variation

of water-rod velocity due to power perturbation was not modeled. The decay ratios were
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estimated at the full power and flow conditions. The flow rate and inlet enthalpy of feedwater

were held constant, and the active core was divided into 80 axial meshes. For a consistent

comparison, the instantaneous mixing approximation was used for the two-channel model.

It was observed that the delayed feedbacks of flow redistributions result in slightly

higher resonant frequencies for the two-channel model. Different heat transfer correlations

change the heat transfer characteristics between coolant channel and water rod and thus result in

somewhat different resonant frequencies. For example, the Bode diagram in Figure 4-7 shows

that the two-channel model increases the main resonant frequency from 0.51 to 0.52 rads/s for

the Dittus-Boelter correlation and from 0.46 to 0.65 for the Jackson correlation. Relative to the

Dittus-Boelter correlation, the Jackson correlation increases the resonant frequency more.
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Figure 4-7 Bode Diagram for Thermal-Nuclear Coupled Stability of Two-Channel Test

Problem

The roots of the system characteristic equation and the decay ratios are compared in

Table 4-3. It can be seen that the water-rod velocity variation due to power perturbation increases

the decay ratio slightly because of the increased delayed feedback of water-rod density variation.
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As shown in the previous work [4], the delayed feedback due to water-rod density variation
increases the decay ratio of thermal-nuclear coupled stability. The decay ratio of two-channel
model is smaller than that of single average channel model for both Dittus-Boelter and Jackson
correlations. As shown in Figures 4-5 and 4-6, the hot channel has larger variations of average
fuel temperature and coolant enthalpy than the average channel, while its water rod enthalpy
variation is similar to that of average channel. Thus, the hot channel introduces larger Doppler
and coolant density feedbacks than the average channel. As a result, the two-channel model
including hot channel assemblies results in smaller decay ratios. Compared to the Dittus-Boelter
correlation, the Jackson correlation gives significantly smaller decay ratios because of reduced
heat transfer from coolant to water rod that in turn decreases the delayed feedback due to water-

rod density variation.

Table 4-3 Roots of System Characteristic Equation and Decay Ratios of Thermal-Nuclear
Coupled Stability of Two-Channel Test Problem

Heat Tra}nsfer Dittus-Boelter Jackson
Correlation

. . Decay . Decay
Dominant Root Real |Imaginary Ratio Real |Imaginary Ratio
Old Single Channel -0.1411 | 0.5351 | 0.1907 | -0.1996 | 0.4548 | 0.0757
New Single Channel -0.1175 | 0.5084 | 0.2341 | -0.1759 | 0.4582 | 0.0896
Two Channel -0.1560 | 0.5196 | 0.1517 | -0.2729 | 0.6525 | 0.0722

To determine the decay ratio for zero mesh size, the effects of the axial mesh size on the
dominant root and decay ratio were also investigated. As shown in Figure 4-8 for the coupled
thermal-nuclear stability of the two-channel test problem, the dominant root and decay ratio
significantly depend on the axial mesh size. However, it can also be seen that they are almost
linear functions of mesh size when the mesh size is sufficiently small. Therefore, the decay ratio
was determined by computing five values with different mesh sizes (80, 90, 100, 110, and 120
axial meshes for active core height) and by extrapolating those to the zero mesh with a linear

least squares fitting.
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The decay ratios of thermal-nuclear coupled stability were estimated at full power and
flow conditions. The same stability criteria for BWR were assumed for SCWR. The decay ratio
for the thermal-nuclear coupled stability should be below 1.0 for all operations and below 0.25
for normal operation. The decay ratios for zero mesh size were determined by extrapolating five
values obtained with 80, 90, 100, 110, and 120 axial meshes for the active core height. Table 4-4
compares the resulting decay ratios of the single average-channel and two-channel models. The
dependency of decay ratio on the axial mesh size is also presented in Figure 4-9. For the two-
channel model, the decay ratios were calculated for two bounding inlet boundary conditions
discussed in Section 3.2.2. The instantaneous mixing boundary condition neglects the time delay
of the mixing in the lower plenum, and it is equivalent to assuming that the lower plenum mass is
zero. The constant mixed-mean enthalpy boundary condition assumes that the steady state
mixed-mean enthalpy of water in the lower plenum is maintained during the time of interest, and

it is equivalent to an assumption of infinite lower plenum mass.

Table 4-4 Roots of System Characteristic Equation and Decay Ratios of Thermal-Nuclear
Coupled Stability Estimated for Zero Axial Mesh Size

Heat Transfer Correlation Dittus-Boelter Jackson

Decay
Ratio

Decay

Dominant Root Real |Imaginary Ratio

Real |Imaginary

Single Average Channel -0.1118 | 0.5161 | 0.2561 | -0.1727 | 0.4685 | 0.0985

Two Channel —
Instantaneous Mixing BC

Two Channel — Constant
Mixed-Mean Enthalpy BC

-0.1484 | 0.5264 | 0.1695 | -0.2612 | 0.6716 | 0.0862

-0.1545 | 0.4938 | 0.1397 | -0.2546 | 0.6715 | 0.0917

Figure 4-9 shows that the decay ratio of the single channel model is consistently larger
than that of two-channel models for both the Dittus-Boelter and Jackson correlations. As
aforementioned, the hot channel introduces larger Doppler and coolant density feedbacks, which
are prompt relative to the water-rod density feedback. Thus, the two-channel models that include
hot channel assemblies result in smaller decay ratios. It is noted that for the Dittus-Boelter
correlation, the decay ratio estimated with the single channel model is larger than the BWR

stability criterion, while those obtained with two-channel models satisfy the criterion.
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As discussed above, the Jackson correlation produces significantly smaller decay ratios
than the Dittus-Boelter correlation, because of reduced delayed feedback due to water-rod
density variation. On the other hand, the effects of the inlet boundary condition are not
monotonic. Compared to the constant mixed-mean enthalpy approximation, the instantaneous
mixing approximation produces smaller decay ratios for the Dittus-Boelter correlation but larger

decay ratios for the Jackson correlation, although the difference is not so significant.
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5. Conclusions

The frequency domain linear stability analysis code SCWRSA has been extended to
include the multi-channel thermal-hydraulics analysis capability. An iterative solution scheme
was developed to calculate the steady state flow distribution among parallel thermal-hydraulics
channels under a fixed total flow rate and the equal pressure boundary condition. This scheme
determines the coolant and water-rod flow rates simultaneously by taking into account the heat
transfer between coolant and water rod. Each thermal-hydraulic channel is represented by a
single pin cell with a water rod. The single pin cell representation is made such that the area of
water-rod wall per pin cell is preserved. For linear stability analysis, perturbation calculation
models for flow redistribution among parallel channels were developed along with an efficient
scheme to solve the resulting system of linear equations. Time-dependent behavior of water in
the lower plenum was approximated by two bounding inlet boundary conditions: instantaneous
mixing and constant mixed-mean enthalpy of water in the lower plenum. The instantaneous
mixing boundary condition neglects the time delay of the mixing in the lower plenum, and the
constant mixed-mean enthalpy boundary condition assumes that the steady state mixed-mean

enthalpy of w